Photonic crystals: from Bloch modes to T-matrices

B. Gralak, S. Enoch, G. Tayeb

Institut Fresnel, Marseille, France

Objectives :

- Links between Bloch modes and grating theories (transfer matrix)
- Study of anomalous refraction at the band edges and applications

Bloch wave: $\psi_{\vec{k}}(\vec{r}) = e^{i \vec{k} \cdot \vec{r}} u_{\vec{k}}(\vec{r})$

→ Dispersion relation of the Bloch modes But:

- the crystal is infinite and fills the whole space
- no incident field
- only real Bloch vectors are considered

Studied structure:

2D photonic crystal made of dielectric rods of radius 0.475, with optical index n = 3arranged on a square lattice with period d = 1.27

The eigenvalues of the transfer matrix T give us more information than the Bloch modes.

T-matrix and Bloch modes

Bloch mode: solution with only phase shifts for the elementary translations **d** and Δ .

A crystal made of 3 gratings. Infinite along the x-direction. Finite extent with respect to the y-direction. Plenty of place for an incident field !

T-matrix point of view:

d translation gives phase shift (pseudo-periodicity). Δ translation gives phase shift for eigenvectors of the **T** operator if the eigenvalue has a modulus equal to 1.

Harmonic problem $\rightarrow \omega$ given.

Pseudo-periodic component of the field $\rightarrow k_x$ given:

 $u(x+d, y) = \exp(i k_x d) u(x, y).$

Eigenvector of the T-matrix, with eigenvalue μ :

 $T u = \mu u$

T
$$u = \exp(i \arg(\mu)) u$$
, if $|\mu| = 1$

Each eigenvalue μ of T with $|\mu| = 1$ is associated with a propagating Bloch mode. The *y*-component of the Bloch vector is:

$$k_y = \frac{k_x \Delta_x - \arg(\mu)}{\Delta_y}$$

 $\begin{array}{c} \omega \text{ given} \\ k_x \text{ given} \end{array} \xrightarrow{\text{grating problem}} k_y \end{array}$

Dispersion curve of Bloch modes

Dispersion relation of the Bloch modes in a 2D photonic crystal

In the infinite structure the field is can be represented as a sum of Bloch modes: $\psi_{\vec{k}}(\vec{r}) = e^{i \vec{k} \cdot \vec{r}} u_{\vec{k}}(\vec{r})$

Enlargement of the previous figure at the upper limit of the second band gap.

For a fixed wavelength λ the dispersion relation is the intersection between a horizontal plane and the sheets.

The energy flow is given by $\frac{\partial \omega}{\partial k_x} \vec{e}_x + \frac{\partial \omega}{\partial k_y} \vec{e}_y$: it is perpendicular to the curve and points toward the ascending side of the sheet.

Ultra-refraction

Bounded 2D photonic crystal Modulus of the electric field. $\lambda = 2.54$, $\theta = 6.4^{\circ}$

Negative refraction

Modulus of the electric field. $\lambda = 2.54$, $\theta = 40^{\circ}$

Application: ultrarefractive optical components 1 - lens

"Ultrarefractive" microlens: a convergent lens with focal length = 21 λ . The width of the lens is about 25 λ .

 \rightarrow Very high index contrast (1/0.086 \approx 12)

 \rightarrow Very dispersive material.

Dispersion relation of the Bloch modes for the hexagonal (left) and the expanded lattice (right). The bottom plane of the figure is for $\lambda = 7.93$.

Radiation pattern of the photonic crystal source $\lambda = 7.93$.

Modulus of the electric field. Wire source is located at x = 0, y = 34. $\lambda = 7.93$.

The computation time (161 rods) is about 5 seconds to compute the coefficients of the field and 20 seconds to compute the field map (80x80 points) on a desktop computer.

Conclusion

Classical Bloch study	Grating, T-matrix	More realistic problem
Infinite crystal filling the	Slice of grating.	Finite structure
entire space	Finite in one direction	(microlens, microprism,
		antenna,)
No incident field	Simple link with the	Incident field (plane
	incident field (diffraction	wave, limited beam,
	case, emitting situation)	source in the crystal)
Only propagating modes	Also evanescent modes.	Also evanescent modes
	\rightarrow information on the	
	transmission inside a	
	bandgap	
Dispersion relations of	Eigenvalues of the	
the Bloch modes	T-matrix	
$k_x, k_y \rightarrow \omega$	$\omega, k_x \rightarrow k_y$	
	Includes all the features	
	of a classical Bloch	
	study, plus more	
	More accurate, faster.	
Synthetic approach (visual support given by the 3D		Rigorous numerical
dispersion diagrams of the Bloch waves). Helpful		computations
in the understanding of the photonic crystal		\rightarrow Confirm the expected
properties.		behaviors
Permits to obtain easily the parameters giving rise		\rightarrow Quantitative results
to:		\rightarrow Check the effects of
• ultrarefraction (the photonic crystal simulates a		the boundaries of the
homogeneous material with a very low optical		photonic crystal
index),		
negative refraction,		
and more generally to get the allowed directions for		
the mean energy flux in the photonic crystal.		

References

B. Gralak, S. Enoch and G. Tayeb. "Anomalous refractive properties of photonic crystals." J. Opt. Soc. Am. A **17**, 1012-1020 (2000).

S. Enoch, G. Tayeb and D. Maystre, "Numerical evidence of ultrarefractive optics in photonic crystals", *Optics Communications* **161**, 171-176 (1999)

G. Tayeb, D. Maystre. "Rigorous theoretical study of finite size twodimensional photonic crystals doped by microcavities". J. Opt. Soc. Am. A **14**, 3323-3332 (1997).