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ABSTRACT

We report on our work about the electromagnetic theory of gratings made
with anisotropic materials. We describe briefly and give the fields of
application of both differential and integral methods.

At the present time, a computer program based on the integral method works
for an arbitrary uncoated dielectric anisotropic grating, the surface of
which is given by y=f(x), provided that the principal axes of the
pernittivity matrix be the ones wused to describe the geometry of the
structure.

The differential method, which is very flexible and easy to implement,
allows us to deal with a great variety of problems. A computer program has
been written which treats the problem of an anisotropic substrate covered
with an anisotropic layer, and does not require any restrictive condition on
the permittivity matrices. Unfortunately, the numerical difficulties which
appear especially for deep and lossy gratings are not yet completely removed.

l. DEFINITION OF THE PROBLEM

Using a time dependence in exp(-iot),
the time harmonic fields are represented

by complex vectors E and H. We use a
rectangular coordinate system and denote

by 31, 82, 33 the unit vectors of x, y,
z axes (fig.l). The permeability is p, superstrate
everywhere; €9 denotes the wvacuum )
permittivity. The grating is illuminated AN _
with the incidence © by a plane wave of y= _ -
arbitrary polarization propagating in inhomogeneous and {&;. [elx.y]
the superstrate (wavelength A). In the modulated region '
case where the electric incident field y=0

=1Z & X

= 3 [} e e
vector E (resp. the magnetic incident substrate 3 1 [62]

field vector H ) is parallel to 53, we
will speak of TE (resp. ™ )
polarization case. Figure 1.

In the superstrate the relative permittivity is a real number €,. The region
O<y<a 1is filled by anisotropic materials and its relative permittivity is a
3x3 matrix [€(x,y)], whose elements are periodic functions of x (period d).
The substrate is filled by an homogeneous anisotropic material of relative
‘permittivity [€,] . Because the wave vector of the incident plane wave is
assumed ¢to lie in the xy plane and the structure is z-invariant, all the
fields are z-independent. Assuming existence and uniqueness of the solution,
it 1is known that any field-component u(x,y) is pseudo-periodic and can be
expanded in a generalized Fourier series development:

u(x,y) = EEZ u, (YY) ¥,(x) , where v,(x) = exp(io,x) , (1)
n

o, = Jel kosin8 + n 2m/d and k4 = deo kg . The uj,(y) will be called the
generalized Fourier coefficients of the function u(x,y). We look for the
total electromagnetic field with a special care to the efficiencies in the

different reflected and (in the case of a lossless substrate) transmitted
orders.
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2. THE CIASSICAL DIFFERENTIAI, METHOD (C.D.M.)

This Tethod has been already used some years ago in the case of isotropic
gratings *. It @s easy to implement and is able to deal with the more general
problems of anisotropic gratings: anisotropic substrate covered with an (or
several) anisotropic layers (fig.2), "slanted" anisotropic gratings (fig.3),
gratings in which the permittivity is continuously modulated, etc...In
fgct,the method can be applied to the general problem described in section 1,
with matrices [€(x%,y)] and [€;] of the most general form (i.e. complex
matrices with all elements a priori different from zero) . Unfortunately, some
numerical difficulties occur, particularly for deep gratings in the case
where the region 0O<y<a contains 1lossy materials. These difficulties have

already been encountered in the Laboratory for isotropic gratings, and are
probably inherent in the C.D.M..

Ay
6 Figure 2. Figure 3.

h

" Let us now expose the principle of the C.D.M.. We suppose that the field
components are well described by their N components on the ¥, basis (i.e. we

use truncated developments (1), where n goes from -P to +P, and N=2P+1l). It
is easy to show that the electromagnetic field can be described by a column
?N(y) with 4N components which are the generalized Fourier coefficients of
Ey, Egz, Hy, H; (the other components E, and H, are easily deduced from these
four components). The problem is £inally reduced to the determination of
?N(y) knowing that:

aFy(y) -
a) For 0<y<a, ——g;—— = A(y) Fy(y) , A being a 4Nx4N known matrix containing

the Fourier coefficients of the nine x-periodic functions eij(x,y) composing
the matrix [€(x,y)] and the parameters kgr © , Bg, &y,

b) iN(o) belongs to a certain 2N-dimensional subspace E; for which we know an

orthonormal basis Gn(o). This is a way to express the radiation condition for
y — =» . In the case of isotropic substrates the determination of this basis
is straightforward remembering that for y<0 the field can be expressed as an
outgoing plane waves Rayleigh ¢xpansion. In <the case of anisotropic

a¥y (y)
N -
substrates, we can write for y<0 that —_E§_— = A ¥Fyn(y) , where A no longer

depends on y. For i=1,2,...4N, we call X; and ii the eigenvalues and the
associated eigenvectors of A. It comes:

for y<o F (y) = E: C; exp(riy) X
* N i=1,..4n * 124
whera the C ; are complex constants. Only 2N values of the \j; are convenient
to fulfil the radiation condition. Denoting by J the set of the associated
indices, ¥y(y) takes the form:

for y<o , Fy(y) = Eg Cy exp(ryy) Xy

which shows that the ii' i€J , form a basis of Eg.

c) jﬁnc representing the incident field, fﬁ(a)v- iﬁnc(a) belongs to another
2N-dimensional subspace F, for which we know an orthonormal basis. This

expresses that for y>a , the diffracted field is given by an outgoing plane
waves Rayleigh expansion.

T

H
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To solve the problem we proceed as follows. For 0<y<a and for each n, we
determine v,(y) from the initial value GD(O) and the numerical integration of

avy (y)
ay

iN(y) = E: an ;n(y) satisfies a) and b) . The a, associated with the
solution must be determined in order to fulfil c) , i.e.

a, vp(a) - ﬁnc (a) € F, . We are led to a classical problem of linear
analysis.

At the present time, a computer code has been written which deals with the
structure depicted fig.2 , i.e. an anisotropic substrate with a sinusoidal
surface, covered by an anisotropic layer. Their permittivities are complex
matrices and have the most general form. Some numerical results have already
been published in the case of dielectric anisotropic layers and gyrotropic
metallic 1layers 2 . Let us give an idea of the possibilities of this program
when the wavelength of the light is about the grating spacing d. In the case
of unlossy materials, reliable results are obtained when the ratio a/d is
less than about 0.5. For 1lossy materials, this ratio depends on various
parameters, and in particular the polarization of the incident light and the
permittivities of the media. No practical rule can be given, but some
calculations have shown that in the most difficult case (aluminium substrate,
TM polarization) the relative accuracy on all efficiencies is about 10%
(resp. 20%) when a/d is near 0.1 (resp. 0.2). Some other data obtained with a
gyrotropic cobalt layer deposed on a dielectric substrate show that reliable
results are obtained when a/d is about 0.1.

Let us emphasize that when using the C.D.M. for unlossy media, the energy
balance criterion can not be used as a check of validity of the numerical
results, which has been shown in a preceding paper 3 . Indeed, it is
automatically verified by the truncated solution, whatever the order of
truncature N. The only ways to test the reliability of the results is to
observe the convergence of the solution when N increases, or to make
comparisons with results obtained through the implementation of others
methods (integral method for instance). Such a comparison is made in another
paper presented at the same session by the same authors 4,

= A(y) Gn(y) . Obviously, whatever the constants an,

3. ATTEMPTS JIN ORDER TO IMPROVE THE DIFFERENTIAL METHOD

Two studies have been achieved in order to get rid of the numerical
difficulties which 1limit the field of application of the C.D.M.. These
studies have been developed in a simplified case which 1leads to the same
troubles as the general anisotropic grating, i.e. an isotropic aluminium
grating illuminated by a TM polarized plane wave (fig. 4).

194
™
polarization vacuum
Figure 4. )
~y=a S — ,
-\\\\_‘////—\\\\\_////—‘\\\\‘—////—h
X  aluminium substrate '
eort o

The method has briefly been described in a preceding paper 5. With
sufficiently deep gratings, we observe with the C.D.M. that the computed
efficiencies have not - stabilized before N reaches a reasonable value (say
some tens) and suddenly become greater than 1! By performing

reorthonormalizations in the course of the integration of the basis Gn(y)

between y=0 and y=a, it is possible to use greater values of N than with the
C.D.M.. Unfortunately, the convergence of the solution with respect to N is
slow and we are led to very long computation times.
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We still consider the simplified case depicted fig.4. Here

3.2. Int on o " x"

we put
uy (x,y) = Hy(x,y) = > U n(¥Y) ¥u(x) and uy(x,y) = Ey(x,y) = > Usn (Y) ¥p(x).
These developments :re truncated keeping N terms on the $n basis; let us
denote by ﬁl(y) the column with N elements which are the uj;j(y) , by ﬁz(y)
the column with N elements which are the u,,(y) and by U(y) the column with

U (Y)
The problem to solve can be written in the following manner:

au -
a) for O<y<a , _E£Xl = A(y) U(y) ., A(y) being a 2Nx2N known matrix of the

same kind that the one defined in section 2, and which here takes the form:
0 A
A= [Al 3] , wWhere A, and A, are NxN matrices. In other words, for 0<y<a, it

2N elements which is: U(y) = [91(Y)]

is equivalent to say that:
au, (y)
ay

av, (y) -
—ay = Ay (y) Uy(y)

Let us introduce another NxN matrix Z(y) such as:
Uy (y) = Z2(y) Uyp(y) (3)

= A, (y) Uy(y) -

This matrix has the dimensions of an impedance and will be called the
impedance matrix. From (2) and (3) it is easy to get:

d
T = M -z Ay) Z(y) , (4)

b) expressing the radiation condition for y - -« , we obtain easily z(0).

c) Uinc representing the incident field, U - UINC nust verify another
radiation condition for y - 40 . It is not a difficult matter to show that
this property can take the form (2, being a known NxN matrix):

U,(a) = 2, Uj(a) - 2 2, Oinc(a) . (5)

The problem is solved in the following way. From the value of 2(0) and
through the integration of (4) we obtain Z(y) for 0<y<a. Equations (3) and

(5) give the linear system 2(a) Uj(a) = 2, Uj(a) - 2 2z, U{NS(a) , which

allows us to determine the reflected field. In order to get the transmitted
field, we can write from the first equality of (2):

au, (y)
ay
As 2Z(y) and ﬁl(a) are known, the integration of (6) from y=a to y=0 gives

= A, (y) 2(y) Uy(y) . (6)

51(0). Clearly, this impedance matrix method (I.M.M.) is quite different from
the C.D.M.. From the numerical point of view, and in this case (isotropic
materials), the C.D.M. 1leads to the integration of N vectors with 2N
components, whereas the I.M.M. needs to determine the reflected field the
integration of N2 matrix elements and to determine the transmitted field the

integration of the N components of ﬁl'

£ D
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Our computations have shown instabilities in the integEation of (4), which
has been performed using Adam's 5th order formulae with prediction and
correction, starting with Runge-Kutta's 4th order algorithm. For example, let
us consider the problem: d = 0.833 pm, h = a = 0.1 um, A = 0.6 pm, normal
incidence; we take for the aluminium the refractive index 1.3 + i 7.1 and
represent the fields with N=33 Fourier coefficients. If the number of steps
of integration J is less than about 100, the integration process diverges.
Then, when J is taken greater (200 for example), we obtain the same solution
as with the C.D.M.. As for the C.D.M., it is much less sensitive to the value
of J, and in this example, J = 50 is sufficient.

Confronted with these troubles, we have tried some modifications of the
I.M.M.. Instead of the impedance matrix, we can consider the "admittance

matrix" defined by ﬁl(y) = f(y) ﬁz(y). We are led to a similar problem, i.e.

. af . .
the integration of (¥) = Ay - & A7 £& knowing #(0). The main difference

between the methods isythat Z(y) is (before the truncature of the Fourier
series) an unbounded operator whereas #(y) is bounded. But the numerical
studies have shown that this last method leads to greater instabilities in
the integration process that the I.M.M., and must be used with a higher
number of integration steps. Consequently, it has been forsaken.

In conclusion, we can say that, all the differential methods which have
been implemented give, for a given value of N and convenient value of J, the
same results. In the difficult cases (deep gratings, 1lossy media, TM
polarization case), the convergence of the solution towards N can be slow,
and great computation times are necessary to get valuable results. We are now
convinced that this problem will persist as long as the ¢, basis will be used
to describe the fields according to (1)

NTEG HO I.M
4.1. Presentatio

Because of the difficulties encountered with the differept%al metyods, we
have investigated during the last two years the possibilities of integral
methods for the study of periodic anisotropic structures. At the present
time, a computer program based on the I.M. works for an arpitrary uncoated
dielectric anisotropic grating, the surface of which is given by y=£(x),
provided that the principal axes of the permittivity matrix be the ones used
to describe the geometry of the structure (fig. 5). In other words, [€;] is

€ 0o O
x
here a diagonal matrix 0e, Of . This method has been recently described
0 0e€,

in two papers 6¢7 in which the interested reader will find more detailed
explanations.

(A

Figure 5. ' Figure 6.
g h = 0.2 pm, @ = 30*, d = 0.5 pm.

v
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In this paper, we will only summarize the main lines of our study, which is
an adaptation to the case of anisotropic gratings of a well known three steps
process. The unknowns are now the tangential components of the
electromagnetic field on the grating profile #, and they can be described by
four functions: E(x,f(x)).e3 , E(x,£(x)).E(x) , H(x,£(x)).e5 , H(x,£(x)).E(x)
(fig. 5).

First step is to determine a set of nine “Green's functions" gij(x,y)

3
which are defined as Gi - g: 9ij Ej where the 51 are solution of:
. =1
G-k Y13 =5 = L ose @ -
curl curl g; - k§ (€3] 93 = ey - a §(y) ¥p(x) , i=1,2,3, (7)
: n

and must satisfy a radiation condition for y = ¥« . In equation (7), t[€2] is

the transpose of [€,] , @n the complex conjugate of ¥, and § the Dirac
distribution. This determination has been performed in the case where [€,] is

diagonal 8. For more general matrices, the determination of the giy seems to
be a very hard and tedious task, which has not been carried out.

Second step 1is to express the diffracted field in terms of the four
unknowns defined on ? (generalized Kirchhof-Helmholtz formulae) and with the
help of the Greens's functions.

Third step is to get integral equations for the unknowns by the mean of a
convenient 1limiting process. The different integral equations we can obtain
are not equivalent from both the theoretical and numerical point of view.
Finally, we have retained those which contain the less singular kernels
(unbounded kernels with a logarithmic singularity). They are similar to those
already encountered in the  case of isotropic gratings. Putting

€
X
8= JZ; (k% €y - ag) , with the determination Im(8, ) > 0 or Bg,> 0, and

. denoting by sgn(y) the function equal to +1 if y>0 and to -1 if y<0, we have
to deal with the kernels:

1 S € k3
{1+g7()2 n Pn
1 €x*n
DI
{1+£1(x)2 0 yon
with ¢ (x,x') = exp(io,(x-x') + ip l£(x)-£(x")]) .
From the numerical point of view, a slight change of unknowns permits us
to get integral equations in which kernels and unknowns are periodic, and we
therefore represent them by their Fourier series. The Fourier coefficients of

the kernels are obtained via a discrete Fourier transform, and the problem is
finally reduced to the solving of a linear system.

K(x,x') =

Pn(x,;x") ,

K'(x,x') = £'(x') + sgn(£(x')-£(x))] Pp(x,x') ,

4,2 s ences t dia of the pe ttivit atri

Expressing the Maxwell's equations curlE = impoﬁ and curlH = -iweo[ez]ﬁ
in a medium of diagonal permittivity matrix, it appears that the six obtained
equations can be split in two systems of three equations. Each of them
contains only three field components: (Ez,Hy,Hy) or (H;,Ey,E,). The incident
field can also be split in two parts: one (we call it the TE part) contains
the components EZNC, H%nc’ Hync; the other (TM part) contains the components

Hinc , E%nc , Einc | e problems associated to a TE or to a TM incident wave
are therefore independent. In other words, he jnciden el s TE (resp.
™ olarized, the total field will be eve ere TE (resp. TM) polarized.
From Maxwell's equations again, one can persuade himself of the following

resu}ts: In the case, th ati is equivalent to an isotropic gqrating of
permlttlyltx' eé. In the TM case, and when €y-and €,, have a common value €,
the gratin s equivalen o a sotropi atin ermittivity €. Thus the

cas:i o? an uniaxial megium disposed with its optical axis parallel to the
grating's grooves can e solved with the help of compu
isotropic gratings. P puter programs made fox
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From the preceding section, it is clear that the numerical study must
concern the TM polarization case, when €.,* €,,. We deal with a substrate which
has three plainly different permittivities: €x= 6.31 , €,= 6.81,
€,= 7.34, which, according to reference 9, corresponds to the lithargite. It
is therefore a very academic example... Superstrate is vacuum (€= 1 ). The

grating is illuminated by a TM incident plane wave (A = 0.6 um) under the

incidence 6 = 20°. The grating period is d = 0.5 pm. The groove . depth is
conditions, we get two reflected orders:

h = max(f(x))-min(£f(x)). In these
orders -1 and O propagating wunder the angles -59.09° and 20°, and four
and 1). These orders have wave vectors which

transmitted orders (-2, -1, O
make with vector —52 the angles -53.11°, -18.88°, 7.82° and 37.27° whereas

their Poynting vectors make with -e, the angles -50.99°, -18.53°, 7.25° and
35.19°. We denote by (see section 4.1.):

NSOM the number of terms retained for the summation of the series giving
the kernels (summation is performed from -NSOM to +NSOM ),

N the number of Fourier coefficients retained in the developments of the
kernels and unknowns in Fourier series (summation is performed from -(N-1)/2
to +(N-1)/2 ),

ND the number of sampling points (for one grating period) used for the
integrations via the discrete Fourier transform.

The numerical tests show (table 1) a fast convergence of the solution when
N, ND and NSOM increase. We also see that the energy balance gives an
estimation of the accuracy of the computed efficiencies. We have also
reported in table 1 the computation times on CRAY 2 (they are about the same
as those obtained on IBM 3090, which is probably a more "common" computer).

Table 2 shows the results obtained for the echelette grating depicted
figure 6. As the I.M. deals with profiles described by functions of class ce,
the function f 1is represented by a Fourier series truncated to the harmonic
NH. One will notice the fast convergence of the solution when NH increases.

4.3. Numerical results

Table 1. Sinusoidal profile; h = 0.2 pn.

N=7,ND=15 N=11,ND=25 N=25,ND=45

order NSOM=10 NSOM=20 NSOM=30

reflected -1 0.0914 0.0923 0.0923
efficiencies (o] 0.0003 0.0003 0.0003
-2 0.0082 0.0078 0.0078

transmitted -1 0.2608 0.2530 0.2530
efficiencies 0 0.2185 0.2230 0.2231
1 0.4275 0.4238 0.4235

sum of efficiencies 1.0067 1.0002 1.0000
computation time ls 3s 11 s

Table 2. Echelette grating (fig. 6); N=25, ND=45, NSOM=30.

order NH = 3 NH = 5 NH = 10
reflected -1 0.1226 0.1167 0.1166
efficiencies 0 0.0126 0.0142 0.0143
-2 0.0119 0.0126 0.0128
transmitted -1 0.1339 0.1363 0.1365
efficiencies 0 0.4782 0.4766 0.4758
1 0.2408 0.2436 0.2439

In conclusion, let us say that the I.M. , which leads to reliable‘results,
seems quite difficult to extend to more general anisotropic media (i.e. when
the permittivity matrix is not diagonal in the coordinate system we use).
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