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Numerical study of the symmetrical strip-grating-loaded slab
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As a result of symmetry considerations, a simple computer code is proposed that permits inexpensive study of some
noteworthy properties of the symmetrical strip-grating-loaded slab.

1. COMMENTS ON A PREVIOUSLY
PROPOSED METHOD

First, we would like to examine briefly a paper by Lakhtakia
et al.l A critical examination of Ref. 1 has already been
published (the reader who did not follow the controversy can
go directly to Section 2).

As pertains to Ref. 1, we call a symmetrical strip-grating-
loaded slab the structure depicted in Fig. 1. We designate ¢
and ug as the vacuum permittivity and permeability, respec-
tively. In Fig. 1 regions 1 (z > 2d) and 3 (z < 0) are both
filled with a medium whose constitutive parameters are ¢;
and po. Inregion 2 (0 < z < 2d) lies the grating medium (e,
uo) divided into cells (width 2a) by perfectly conducting
walls, which are represented by the vertical, heavy lines. If
the structure is illuminated in normal incidence by a mono-
chromatic plane wave (wavelength in vacuum \g) and we
take into account a time dependence in exp(—iwt), the total
field in region 1 is given by

2N
Vi, 2) = > [A,” exp(=if,,2) + A," exp(iB,,2)]
n=0
X expli(n — N)wx/a], (1)
with
Bin = tks% — [(n — N)x/a]3"2,

Likewise, in region 3 the total field can be represented as

An_ = 6nN' (1,)

2N

Yalx,2) = z C,” exp(—if,2)exp[i(n — N)wx/a]. (2)
n=0

Finally, and by assuming TE polarization for simplicity, the
field is given in region 2 by the modal representation

2N

Volx, 2) = Z [B,,” exp(—iB,,2) + B," exp(iB,,2)]
n=0

X sin{(n +1)r >

+a
> ] 3)
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Bon = {k22 - [—(” b “]2}1/2- 3)

To obtain the unknowns A,*, B,*, B,~, and C,~, we must
write the continuities of the field and of the z derivative at z
=0and z = 2d. To this end, and as was done in Ref. 1, we
can express the equality of two functions by equalizing their
components on the basis formed by functions sin[(n + 1) (x
+ a)/2a]. Itis convenient to introduce column matrices A,
At, B*, B-, and C-, whose components are, respectively,
A, AN, By, By, and C,-. The matching at z = 0 leads to

a(B~+ Bt) =JC", 4
a(—B~ + BY) = -M, 1JM,C". )
The matching at z = 2d leads to

a(D,"B™ + D,*BY) =JD,"A™ + JD,*A*, (5)

a(—M,D,"B™ + M,D,*BY) = —JM,D," A~ + JM,D,*A",
(8%
where D%, D=, Do*, Dy, My, and M, are diagonal matrices
with elements exp(iB1,2d)ém,, exp(—iB1,2d)0m n,
exp(iﬂ2n2d)6m,m exp(_iﬂand)5m,m Bln‘sm,m and ﬁZnam,m re-
spectively. The expression for J,, » is given in Appendix A.
As was already mentioned in Ref. 2, we agree with Lakhta-
kia et al. for the matching at z = 0 only [Egs. (4) and (4)].
Our Eqgs. (5) and (5) are different from their Eq. (9) found in
Ref. 1. Finding A% and C~ is a simple but tedious problem.

Starting with Egs. (4), (4, (5), and (5’) and eliminating B*
and B~ yields

C™ =4MD, A", 6)
A* =D, "PM™'D,"A", (M

where M and P are deduced from the preceding matrices as
follows:

M=X,-X,- X, + X,
X, =J7SY,

P=X,-X,+X;— X,
X, = J\DM, M,
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Fig. 1. OH = 2d, A’A = 2(A0) = 2a. Regions 1 and 3 are filled
with the same medium.

X, =M, JM,DdJ,
S=D,*+D,,

X, = M,"lJ71SJM,,
D=D,*-D,".

Most readers will probably not try to verify all these equa-
tions! Although there are many opportunities to make a
mistake, we hope they are exact because the numerical re-
sults we got from Eqgs. (6) and (7) are identical to those
obtained from the much more simple and reliable algorithm
described in Section 2. We must emphasize that because
MD;~ is not a diagonal matrix, the transmitted field is not
purely specular as claimed in Ref. 1. Moreover, from Eq.
(7), the reflected field A+ does not vanish in the general case.

2, THE METHOD THAT WE SUGGEST

A. Generalities

In Section 1 we endeavored to use the same notations as in
Ref. 1. Now, we will use notations with which we are more
familiar. We therefore choose a new coordinate system (Fig.
2). The thickness will be denoted 2k, and d will be the pitch
of the grating. Moreover, we will deal with an arbitrary
incidence angle # (0 < < 7/2). What we call the total field u
is the z component of E or H, depending on whether the
polarization is TE or TM. When the incident field is writ-
ten in the form ui(x, y) = exp[—iBo(y — h) + iagx], u(x, y) in
region 1 can be described by

o
u(x,y) = u'(x,y) + Z Ry, (x,) (8

n=—ow

and u(x, y) in region 3 by

4o
wz,y) = > Ty, ©

ne—w
where

¥, = expliB,(y — h) + ia,x],
¥, = exp[—iB,(y + h) + ia,x],
a, = w\felTo sin ¢ + n(2x/d),
B2 = wleuy— %,  B,orB,/i>0. (10)

For now it is not necessary to specify the form of u(x, y) in
region 2.
It is convenient to introduce two problems, problems P,
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and P,, for which the total field is, respectively, symmetric
and antisymmetric. These problems and their associated
fields are described in Fig. 3. Notice that (6u/dy)(x,0) =0in
problem P;, whereas u(x, 0) = 0 in problem P,. Therefore,
from the superposition principle

R,=(A,+B)/2, T,=(A,-B,)". 11)

B. TE Polarization

In region 2 and for 0 < x < d, the total field u(x, y), which
vanishes for x = 0 and x = d, can be expanded on the basis of
functions f,,(x) = sin(nwx/d), where n varies from 1 to infin-
ity:

ulx,y) = Z U, (Y)fn(x). (12)
n=1
From the Helmholtz equation, it turns out that
u,(y) = a,sin(o,y) + b, cos(a,y), (13)
Y
0
1
H

I
B

Fig.2. OH=H0=h,0D=d.

region 1 region 3
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Fig. 3. The field description in regions 1 and 3 for the initial
problem P and the problems P, and P,.
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where
an2 = wleopy — (nx/d)>. (13)
In problem P; and because u,’(0) vanishes, the a, coeffi-
cients are null. We perform the matching at y = h (continu-

ity of u and du/dy by projection on the basis of f,), thus
obtaining

b, cos(a, h) = z K, Bom + Ay, (14)

10,0y $I0(01) = > KppBn(=00m + Ay, (14)
m

with (see Appendix B for more details)

d
K,, = % j explia, x)sin(nmx/d)dx. (15)
0

When the field symmetry is taken into account, the match-
ing at ¥y = —h is automatically achieved. After truncation
and elimination of the b, between Eq. (14) and Eq. (14'), we
obtain a linear system of 2N + 1 equations for the 2N + 1
unknowns A,,(—N < m < +N):

+N
z M, A,=S, n=12N+1,

(16)

m=~N
M, =B, —io,tan(e,h)]K,,, a7
S, = [8, + io, tan(o,h)] K . (18)
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an . . ﬂm L3
— Wh) = — K, (8om — A)- (21)
sin(o h) Z i ) 0

3] €

by

m

The expression for K, is given in Appendix B. As in the
TE case, we obtain a linear system:

™

2. 22 . f ) .

@.00 g.10 a8.20 B.38 B.40 8.50

Fig. 4. Reflected zero-order efficiency for both polarizations ver-
sus h/Ay. 8 =0, and the TM curve is the same as the one correspond-
ing to the bare slab, as noted in Ref. 2. d/\y = 0.3 (no influence in
TM), €1 = €, 62/60 = 2.25.

1. 20

In problem P, and because u,(0) vanishes, it is the b,
coefficients that are null. It is easy to verify that the match-
ing at y = h leads to the same linear system [Eqgs. (16)—(18)]
except that we have to replace A, by B, and tan(s,h) by
—cot(aph).

Looking again at problem P, we can see that the Rayleigh
coefficients R, and T, are given by Eqgs. (11). Let us recall3
that because we use the same basis to express the continuity
of u and of du/dy, the energy-balance criterion can be used to
check the quality of the approximate solution obtained after
truncature.

C. TM Polarization

In this case, du/dx must vanish for x = 0 and x = d. Conse-
quently, inregion 2 and for 0 < x < d, u(x, y) is now expanded
on the basis of functions g,(x) = cos(nwx/d), where n varies
from 0 to infinity:

u(x,y) = " up(y)gn(x). (19)
n=0

From the Helmholtz equation, we see that the functions
u,(y) are still given by Egs. (13) and (13).

In problem P, the a, coefficients still vanish. We now
perform the matching at y = h [continuity of u and (8u/3y)/
¢(y)] by projection on the basis of g,. We obtain

b, cos(o,h) = Z K, (om + A, (20)

B.80_

a reflected

B.60

B.40 1

0.20 1

transmitted

8.60L

B.40

B.20 1L

@.00 R

2. 28. 4@. 60. 8@.

Fig. 5. Reflected and transmitted efficiencies in 0 and —1 order
versus §: TM polarization, /Ao = 1, d/Ag = 0.7, €, = €g, €2/ep = 2.25.
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Fig. 6. Same as Fig. 5 for h/x\o = 5.
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Fig. 7. Reflected efficiency in zero order versus §: TM polariza-
tion, h/hg = 1/12, d/X\g = 0.7, €1 = €, €2/eg = 2.25. Under these
conditions, the efficiencies in the —1 reflected and transmitted
orders that appear for § = 25.4° are always less than 0.001. The h/)\g
value (1/12) gives a maximum of reflection in normal incidence (see
Fig. 4).

+N
z M,A,=8, n=0,2N, (22)
m=-~N
. Bn .o, _
M, =|——i—tan(o,h) [K,,. (23)
€ €
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S, = |:’3° +iln tan(anh)]Kno- (24)

€ €

In problem P,, the B,, values are again obtained by a linear
system that is the same as that for Egs. (22)-(24), except
that we must replace A,, by B,, and tan(s,h) by —cot(s,h).

The Rayleigh coefficients of problem P are still given by
Eqgs. (11).

D. Numerical Implementation and Results

This method, which benefits from symmetry considerations,
is easy to implement on a computer and even on a microcom-
puter because of the short computation time. For a given
polarization, this method reduces to the solving of two linear
systems whose coefficients are given in closed form. Indeed,
the computer code that we have written seems efficient and
reliable.

This program was first used to check the validity of Egs.
(6) and (7). It provides us with data that do not confirm the
strange behavior pointed out in Ref. 1. They do, however,
show agreement with the properties expected by microwave
researchers. For example, when 2d is less than the wave-
length in the grating medium, the strip-grating-loaded slab
exhibits strong polarization properties because of the lack of
transmission observed in TE polarization for a sufficient
thickness 2h (Fig. 4). Let us now look at Fig. 5, which
corresponds to TM polarization. On reflection, the zero-
order efficiency, which is low for a large range of 8, presents,
in the vicinity of 19° (see Appendix C), a peak of 100%. This
same phenomenon, which is more strongly marked, can be
observed in Figs. 6 and 7. In other words, for a fixed wave-
length such a grating acts as a perfect mirror for a particular
incidence and as a transmission grating for the other inci-
dences. Conversely, for a given incidence the reflection
peak occurs for a particular value of the wavelength (Fig. 8),
as was noted previously by several authors.*$

We hope that the real simplicity of the method suggested
in this paper will be attractive for engineers and more gener-
ally for any person not familiar with the subtleties of Wie-
ner-Hopf-type methods.® Undoubtedly, an extensive nu-
merical study would lead to interesting and numerous appli-

1. 082

f.08 4 . . ; N
1.8 2.8 3.8 4.9

Fig. 8. Reflected efficiency in zero order versus Ap: TM polariza-
tion, h = 1/12,d = 0.7, €; = €9, €2/¢9 = 2.25, 0 = 21.5°. Only the zero
order exists if Ag > 0.954. The enlargement shows the resonance
peak with more details.
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cations for any range of wavelengths for which the
hypothesis of an infinite conductivity is reasonable (i.e., far
infrared, microwaves).

To conclude, we offer our opinion on the controversy be-
tween Kobayashi® and Montgomery® on the one hand and
Kent and Lee? on the other hand. All these authors studied
the same structure (d/\g = 0.75, h/Ag = 0.5, ¢; = €3 = ¢p) and
plotted |Rol versus §. The total reflection angle 6, is approxi-
mately 16° according to Refs. 5 and 6 and 13° according to
Ref. 4. We found this value to be approximately 15.5°, but
we confess that obtaining a reliable value for 6, requires a
great value of the truncation number N (our estimate is,
respectively, 14.8°, 15.2°, 15.4°, and 15.5° for N = 5, 10, 15,
and 20). Fortunately, apart from this sharp phenomenon,
the results are not so sensitive to the value of N, and we
found that N = 5 is sufficient for most calculations.

APPENDIX A

The elements of matrix J are

In = ja expli(n — N)1rx/a]sin|:(m + )« x;la:ldx.

—a

Setting
1 [te —i a=0
I = 5 j_a expliers/o)dx ={ _sintar)
am

we find that

J, = alexpli(m + 1)«/2]}J(n N+ mT+1>

—afexp[—i(m + 1)7r/2]}J(n —N-— m;— 1)-
APPENDIX B
We define K., and K,,,, as

K, = %j exp(iamx)sin(nwx/d)dx,
0

e .
KOm=EJ0 exp(ia,,x)dx,

- d
K, = %f exp(ia,,x)cos(nmx/d)dx, n #= 0.
0

Setting
1@ 1 t=0
K(t)=~ it = idt) — 1 ,
(t) 4 L exp(itx)dx exp(t' ) ‘0
idt
we obtain

K, = —i[K(a,, + nz/d) — K(a,, — nx/d)],
KOm = K(a,,),
Knm = K(am + n”/d) + K(am - n7r/d), n # 0.
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APPENDIX C

When we examine the zero-order reflected efficiency curve
(Figs. 5-8), we might wonder whether the efficiency actually
reaches 100%. The answer can be given from considerations
similar to those developed in Ref. 7.

Consider the grating depicted in Fig. 2 and illuminated in
regions 1 and 3 by two plane waves (complex amplitudes a;
and a.) under the same incidence 6 (Fig. 9). Provided that
A1/d > 1 + sin 8, the grating yields two diffracted waves only
(amplitudes b; and by). Let S be the scattering matrix

b, 2
When Ry and T are defined as in Subsection 2.A, the ele-
ments S;; of S are
S11=Sp» =R, S =8y = T,
Because S is a unitary matrix, its inverse is equal to its

Hermitian adjoint, which indicates that

RyRy+ T,Ty=1, Re(R,T,) =0.

A

AN

Fig. 9. Grating arrangement described in Appendix C.

| ¢/n

19°Y

6=
-0.6 1 I ! 1 (Pét
) T T Ll
-8.6 -8.4 -B.2 0.0 B.2 B.4 0.8
Fig. 10. TM polarization, d/A; = 0.7, h/Ag = 1, €] = €, €2/6g = 2.25.
When 6 varies from 1° to 25°, the trajectory @ of point A cuts the ¢ =
0 axis.
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Consequently, it is convenient to introduce two real parame-
ters ¢ (—7/2 < ¢ < 7/2) and ¥ (—7 < < 1), unambiguously
linked with Ry and T, by

Ry=cospe¥, T, =isinge".

To each incidence 8 (Figs. 5-7) or to each value of A\ (Fig. 8),
we can associate a point A(g, ). To claim that the reflected
efficiency reaches 100% means that point A crosses the ¢ =0
axis in the ¢, ¢ plane. Insofar as the trajectory € (Fig. 10) is
assumed to be a continuous curve, we have only to compute a
few points to be convinced.
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