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We present here a finite slab of triangular checkerboard of negative refractive index material that exhibits a
form of extraordinary transmission. We show that such a checkerboard can be used to confine light and can act
as an open resonator. Effectively even a single point of intersection between three triangular wedges of
negative refractive index may act as a resonator that confines light in the limit when n tends toward −1. We find
that the quality of the confinement improves by adding more triangular wedges around the initial point in a
checkerboard fashion. The confinement effect is also demonstrated by using a photonic crystal that shows the
negative refraction effect.
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In 1967, Veselago wrote a visionary paper in which ma-
terials with simultaneously negative permittivity ��� and
magnetic permeability ��� were shown to have a negative
refractive index �1�. It was shown by a ray analysis that a
slab of a negative refractive index material �NRM� can act as
a flat lens that imaged a source on one side to a point on the
other. But this result remained an academic curiosity for al-
most thirty years, until Pendry and co-workers �2,3� pro-
posed designs of structured materials which would have
negative � and �. The experimental demonstration of such
materials subsequently at GHz frequencies �4,5� provided a
fillip to research in this area �see �6� for a recent review�.
These so-called metamaterials are structured at subwave-
length lengthscales �typically � /10�, hence it is possible to
regard them as almost homogeneous. Using photonic crystals
�PC� �7�, a very similar negative refraction effect at all
angles of incidence was independently predicted in �8–11�.

In a seminal paper, Pendry demonstrated that the Veselago
slab lens not only involves the propagative waves but also
the evanescent near-field components of a source in the im-
age formation �12�. Such a superlensing effect has been dem-
onstrated at optical frequencies through a silver slab film in
�13� �resolution of � /5�. It was then shown by Pendry and
Ramakrishna �14� that the superlensing effect with a slab of
negative refractive index medium can be generalized to ma-
terials which are spatially inhomogeneous. The only condi-
tion is that the system has to respect a mirror antisymmetry

about a plane normal to the imaging axis. Using a geometric
technique it was shown �14�, as a consequence of this theo-
rem, that two rectangular �semi-infinite� intersecting wedges
of NRM acts as an imaging system whereby a source gets
imaged onto itself. This system, originally studied by Notomi
�10� using a ray picture, was thus shown to involve the eva-
nescent modes also and act as a unique resonator. Guenneau
et al. �15� subsequently generalized this imaging effect to a
rectangular checkerboard lattice where alternating cells have
positive ��=�= +1� and negative ��=�=−1� refractive in-
dex. It was shown that a source placed in one cell would
reproduce itself in every other cell of the infinite lattice. The
properties of corners and checkerboards in the presence of
dissipation have also been studied �16,17�. Monzon et al.
�18� recently derived an analytical solution for a finite sized
NRM wedge in the presence of a source. He et al. �19� stud-
ied some modes of a resonator with NRM wedges and con-
structed an open cavity using triangular wedges of a PC that
shows the negative refraction effect.

In this paper, we show that light can be confined in a finite
checkerboard of NRM. A single intersecting corner of finite
wedges can support leaky modes, and this leakage can be
reduced by putting an additional layer of wedges around the
central intersection point. Thus light can be strongly confined
in the interior of such systems. Due to geometry, a triangular
checkerboard presents some advantage over a rectangular
checkerboard in this regard. We demonstrate this effect using
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FIG. 1. �Color online� Left
panel: All rays incident on the
checkerboard from below �upper
left� and from above �lower left�
are reflected. Right panel: All rays
emitted by a source in the check-
erboard are trapped �closed trajec-
tories around corners�.
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triangular wedges of PC which display the negative refrac-
tion effect.

As a preamble, let us consider a finite checkerboard of
NRM �n=−1� with rectangular cells. It is clear from a ray
picture that a large subset of the rays emanating from a
source placed in one of the cells will always emerge out of
the structure �15�. Although there are other ways of tiling the
plane, the crystallographic restriction and the balance be-
tween overall positive and negative regions imply that we are
left with only rectangular, square or �equilateral� triangular
cells. For a finite checkerboard of triangular cells, the ray
pictures predict that the rays from a source placed in one of
the interior cells cannot escape from the structure if the in-

tersection of the wedges is completely surrounded by other
points of intersection �see Fig. 1, right panel�. This suggests
that such a system will very strongly confine light. However,
a word of caution about the ray picture in such singular sys-
tems would be in order. Consider two optically complemen-
tary layers �14� made of triangular wedges as shown in Fig.
1, left panel. The ray picture clearly shows that all incident
rays should be reflected from the structure while the full
wave calculation of the complementary theorem �14,15� pre-
dicts that the structure should have unit transmission for all
waves and will have zero reflectivity �see also �20� for a
similar paradigm�. In fact, such a structure is an example of
a checkerboard lens which will exhibit subwavelength imag-
ing and extraordinary transmission through excitations of
plasmon resonances �see �16� for transmission properties of
dissipative square checkerboards�. Nevertheless, the type of
plasmonic guidance involved here via the interfaces between
positive and negative index media differs substantially from
the extraordinary transmission through subwavelength holes
in thick metallic films experimentally demonstrated in �21�,
as we shall see in the sequel. As illustrated by the paradox of
the ray picture showing no transmission and the complemen-
tary theorem showing perfect lensing �the optical path can-
cels�, it is imperative to investigate numerically finite struc-
tures of NRM which are of the checkerboard type.

First, we look at the eigenfunctions associated with a fi-
nite checkerboard structure consisting of square and triangu-
lar cells of homogeneous NRM media. We model the spec-
tral problem using the finite element package FEMLAB
which solves Maxwell’s system in unbounded domain with

TABLE I. Samples of resonant wavelengths � computed with
FEM for nondissipative finite checkerboards consisting of square
��� and triangular ��� cells of side a=0.1, i.e., the wavelengths �
considered are fifty times larger than a. The number of cells of the
checkerboards with negative refractive index �n=−1� material
�same number as cells with refractive index n=1� appears in the
first column. Also, � *� and � **� denote respectively upper left and
right modes of Fig. 2.

NRM checkerboard Square ��� Triangular ���

2� /3��*� 4.732+ i0.816 4.844+ i0.795

2� /3��** � 4.645+ i0.822 4.794+ i0.802

8� /12� 5.046+ i0.218 4.999+ i0.036

18� /27� 4.951+ i0.044 4.973+ i0.006

Max 9.86

Max 12.09
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FIG. 2. �Color online� Resonant modes of triangular checkerboards with cells of sidelength a=0.1. Upper left: �=4.844+ i0.795. Upper
right: �=4.794+ i0.802. Bottom left: �=4.999+ i0.036. Bottom right: Harmonic line source at wavelength �=4.999 �see Table I�.
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perfectly matched layers �22�. Eigenfrequencies are in gen-
eral complex with an imaginary part accounting for the leak-
age in a nondissipative medium. In Table I, we list the real
and imaginary parts of wavelengths of a small number of
sample modes obtained for the systems shown in Fig. 2
�there is an infinite number of such leaky modes as the spec-
trum associated with this problem is continuous�. We ob-
served in these calculations that the eigenfunctions are large
in magnitude at the intersecting corners and very small in the
bulk of the material. The working wavelength is typically
fifty times larger than the cell’s size, so that these corner
modes are exponentially decaying away from the corners.
We observe some surface plasmon excitations running along
the interfaces separating complementary media. Since there
is a large degeneracy of the modes, the leaky modes could be
localized at any corner. From Table I, we see that the ratio of
the real part to the imaginary part of some representative
eigenfrequencies increases with increasing size of the check-
erboard �i.e., the leakage reduces�. The rate of increase is
faster for the case of triangular structure. From Fig. 2, we see
that the amplitude of the cornermode increases with the size
of the system �actually it goes up faster for triangular than
for square lattices�.

Second, we investigate the electromagnetic response of
such finite checkerboards to a line source located inside one

of their cells �with positive refractive index�. We numerically
checked that line sources excite the complex eigenmodes of
the nondissipative checkerboards as seen in Fig. 2, bottom
right corner. Indeed, when the �real� frequency of a harmonic
line source is sufficiently close to the real part of the leaky
mode of the finite checkerboard, they do couple together. In
this case, plasmons convey subwavelength details of the
source which is reproduced in every other cell of the check-
erboard. Nevertheless, the singular behavior of the field at
every corner somehow masks the imaging process. Hence we
introduce some small dissipation in every cell with negative
� and � to help figuring out how plasmon resonances build
up the images. For smaller wavelengths �typically one-half
of the cell’s size�, we can see from Fig. 3 that images of the
line source located in a cell of the checkerboard start forming
in every other cells, as it was predicted from the ray analysis
in Fig. 1: For larger wavelengths, evanescent components of
the source become primarily important to build up images,
which start appearing only in large checkerboards �a com-
plex network of plasmon resonances needs to take place�.
The 2D plot of Fig. 3 compares very well with results re-
ported in �17� for a perfect corner reflector.

Finally, we explore light confinement through negative
refraction in such finite checkerboards when we replace the
NRM by a photonic crystal that displays the all angle nega-
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FIG. 3. �Color online� Field radiated by a line source of wavelength �=0.05=a /2 within a checkerboard with dissipative NRM ��=�
=−1+ i4�10−6�.
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FIG. 5. �Color online� Left: Gaussian beam of wavelength �=3.6798a incident from the left on a PC triangle of pitch array a, making
an angle of 30° with the vertical axis. It is centered on the middle of the triangle side �consisting of 60 rods� and its width is 20a. Right: Same
with two triangles with 50 rods on their sides.
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FIG. 6. �Color online� Upper panel: Resonance modes for 3 PC triangles of pitch array a at wavelengths �=3.67976a+ i0.21139a �left�
and �=3.74735a+ i0.000603a �right�. Lower panel: Resonance modes for 12 triangles at wavelengths �=3.68176a+ i0.007727a �left� and
�=3.67965a+ i0.002369a �right�.

RAMAKRISHNA et al. PHYSICAL REVIEW A 75, 063830 �2007�

063830-4



tive refraction effect. We consider a triangular array of cy-
lindrical fibers of circular cross-section and high-refractive
index �n=4� embedded within an air matrix. We meet the
criteria for all-angle negative refraction in p polarization �the
magnetic field is parallel to the axis of cylinders� for a pitch
array a and fibres’ radii r=0.45a at �=3.66a �see Fig. 4�.
The essential condition for the all angle negative refraction
�AANR� effect is that the equifrequency surfaces �EFS�
should become convex everywhere about some point in the
reciprocal space, and the size of this EFS should shrink with
increasing frequency. Further the frequency should be within
the first Bragg zone. The negative refraction effect can be
clearly seen on Fig. 5, left panel, where a gaussian beam of
light of wavelength �=3.6798a is incident on a triangle from
the left, making an angle of 30° with the vertical axis. It is
centered on the middle of the triangle side �consisting of 60
rods� and its width is 20a. On the right panel of Fig. 5 the
same beam is transmitted backwards to the right with a 30
degrees angle with the vertical axis. The multiple beams
arise due to finite reflection at the air-PC interfaces. The
negatively refracted beam in the right panel is actually the
weakest one to emerge. Using such composite triangles as
building blocks of checkerboards, we now look for confined
modes due to all angle negative refraction. For this, we look
for resonance poles in the complex frequency planes in the
vicinity of the negative refraction band of Fig. 4: For the
corresponding finite PC checkerboard, the phenomenon at-
tenuates due to leakage �complex poles�. The resonance
poles were found thanks to an algorithm discussed in �23�
�note that AANR occurs only around a given frequency for
infinite PC�. For a line source operating on resonance close
to the intersection of surface band with light cone, surface
states at interfaces between PC and air dominate: a large field
amplitude can be seen on Fig. 6. The finite reflectivity ob-
served at the PC terminations is due to impedance mismatch
between PC and air. This effect may be reduced by changing
the rod’s shapes on the interfaces between PC and air �as
proposed in �19�� or otherwise by increasing the size of the
structure. Importantly, the amplitude of the field in the
middle corner becomes really large when the line source ex-
cites checkerboard resonances. On the other hand, when the
field radiated by the line source no longer couples with the
checkerboard resonances, it starts filling up the overall PC
region through total internal reflection �effective index larger
than that of air�. In this case the field vanishes in the middle
corner, as seen on Fig. 6 and the leakage is reduced. To

demonstrate the improvement of light confinement through
enlargement of PC checkerboards, we finally compute their
cavity lifetime by evaluating first the total electromagnetic
energy W over a given fixed domain � �here a square of side
length 32a� including the checkerboard and a wire source
and normalizing it with that of the source in vacuum W0 �see
Table II�. We then compute the power P radiating away from
the structure by integrating the Poynting vector flux over ��
and normalizing it by the power P0 when the checkerboard is
removed �source in vacuum�. The normalized cavity lifetime
is then given by T /T0=WP0 / �W0P�. Numerical results show-
ing improvement of cavity lifetime when we increase the
size of the checkerboard are reported in Table II. We also
note its dependence upon the position of line source.

To conclude this paper, we would like to emphasize that
the checkerboard structures we introduce offer a unique way
to confine light through negative refraction, as was checked
both for finite checkerboards of nondissipative homogeneous
NRM with the finite element method, and for composite
checkerboards exhibiting AANR with the scattering matrix
approach. As a corollary of the decrease of the imaginary
part of � when we add up cells around a line source in the
checkerboard �see Table I, Table II, and Fig. 6�, the cavity
lifetime will improve.

S.A.R. acknowledges partial support from the Department
of Science and Technology, India under Grant No. SR/S2/
CMP-54/2003. S.G., S.E., G.T., and B.G. acknowledge fund-
ing from the EC funded project PHOREMOST under grant
FP6/2003/IST/2-511616.

�1� V. G. Veselago, Usp. Fiz. Nauk 92, 517 �1967�.
�2� J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart,

Phys. Rev. Lett. 76, 4773 �1996�.
�3� J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, IEEE

Trans. Microwave Theory Tech. 47, 2075 �1999�.
�4� D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and

S. Schultz, Phys. Rev. Lett. 84, 4184 �2000�.
�5� C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and

M. Tanielian, Phys. Rev. Lett. 90, 107401 �2003�.

�6� S. A. Ramakrishna, Rep. Prog. Phys. 68, 449 �2005�.
�7� E. Yablonovitch, Phys. Rev. Lett. 58, 2059 �1987�.
�8� R. Zengerle, J. Mod. Opt. 34, 1589 �1987�.
�9� B. Gralak, S. Enoch, and G. Tayeb, J. Opt. Soc. Am. A 17,

1012 �2000�.
�10� M. Notomi, Opt. Quantum Electron. 34, 133 �2002�.
�11� C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry,

Phys. Rev. B 65, 201104�R� �2002�.
�12� J. B. Pendry, Phys. Rev. Lett. 85, 3966 �2000�.

TABLE II. Samples of normalized energy W /W0, power radi-
ated P / P0, and confinement time T /T0 computed for a line source
radiating at wavelengths 3.67983a �3�� and 3.67964a �12�� over
a square area of sidelength 32a included in a PC checkerboard of
pitch array a corresponding to upper left and lower right diagrams
of Fig. 6. � *� and � **� denote respectively line sources located at
�0,5.78� and �0,4�.

PC checkerboard Energy W /W0 Power P / P0 Time T /T0

3��*� 5.4901 1.1756 4.6702

3��** � 5.5356 0.7810 7.0879

12��*� 93.840 4.1484 22.621

12��** � 8.6088 0.4310 19.974

CONFINING LIGHT WITH NEGATIVE REFRACTION IN… PHYSICAL REVIEW A 75, 063830 �2007�

063830-5



�13� N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534
�2005�.

�14� J. B. Pendry and S. A. Ramakrishna, J. Phys.: Condens. Matter
15, 6345 �2003�.

�15� S. Guenneau, A. C. Vutha, and S. A. Ramakrishna, New J.
Phys. 7, 164 �2005�.

�16� S. Chakrabarti, S. A. Ramakrishna, and S. Guenneau, Opt. Ex-
press 14, 12950 �2006�.

�17� S. Guenneau, B. Gralak, and J. B. Pendry, Opt. Lett. 30, 1204
�2005�.

�18� C. Monzon, D. W. Forester, and P. Loschialpo, Phys. Rev. E
72, 056606 �2005�.

�19� S. He, Y. Jin, Z. Ruan, and J. Kuang, New J. Phys. 7, 210
�2005�.

�20� J. B. Pendry, Contemp. Phys. 45, 191 �2004�.
�21� L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pel-

lerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev.
Lett. 86, 1114 �2001�.

�22� J. P. Berenger, J. Comput. Phys. 114, 185 �1994�.
�23� G. Tayeb and D. Maystre, J. Opt. Soc. Am. A 14, 3323 �1997�.

RAMAKRISHNA et al. PHYSICAL REVIEW A 75, 063830 �2007�

063830-6


