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Abstract

By "anisotropic grating' we mean a grating ruled on an anisotropic material, and possibly coated with ani-
sotropic layers. We report briefly on the pioneering work carried out in our Laboratory over the past few
years using essentialy integral and differential methods. We would like to acquaint our colleagues not only
with our successes, but also with some of our disappointments ; a failure can be sometimes very instructive.

1. Notationsg

Using a time dependence 1in exp(—-iwt), the time
harmonic fields are represented by complex vectors

E and H. Ve denote by e;, e,, e; the unit vectors
of x, y, z axes (fig.l). The studied structure is
z-invariant and the grating profile is the graph
y = £(x) of a periodic function f whose period d
is the grating pitch. The permeability is Hy

everywhere. The domain 7 (y < £(x)) is filled
with an anisotropic material characterized by a
matrix permittivity [€,]. The grating is illumi-
nated under the incidence 6 by a given plane wave
propagating in the domain @ (y > £(x)) filled
with an isotropic material (scalar and real rela-
tive permittivity €,). The incident wave vector is
located in the (xy) plane, but the polarization is

arbitrary. We look of course for the total
electromagnetic field (E, ﬁ).
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Fig.l. t and n are the unit vectors of the tangent

and the normal.

Assuming existence and uniqueness, we know [1]
that any field component u(x,y) is pseudo-periodic
and can be expanded in a generalized Fourier
series

u(x,y) = Z u, (¥) ¥, (x) (1)
nsZ

W, (x) = exp(i® x) ,

o - |£1 kg sin@ + n 2m/d and ky - “480”0 .
2. Integral method (I.M.)

A priori the unknowns must be the tangential com-
ponents of the fields on the grating surface. We
describe them by four functions F; (x), namely :

F, (x) = E(x,£(x)) .65, Fp(x) = E(x,£(x)).E  (2)

Fy(x) = H(x,£(x)).85, F(x) = H(x,£()).E (2)

to determine a set of nine Green's
being the j'" compomnent

First step is
functions g;;(x,y) ; g;;

of vector gi which is solution of :
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curl curl g‘. - kg fle,] g -
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e; nezg ) ¥, (%) (3
and satisfies the radiation condition for
— * o0, In (3), '[62] denotes the transpose of
[€,] and & the Dirac distribution. For an arbi-
trary [€,] matrix, the obtaining of the 8ij shows

itself a hard and very tedious task ([2]. Up to
now, we have obtained the g;; in closed form, only

in _the case where [€,] is diagonal in the x, y. =z

axes [2.3] (see appendix).

As a second step we express in each domain ' and
{7 the diffracted field in term of the F; with the
help of the Green’'s functions (generalized
Kirchhoff-Helmholtz formulas).

Finally a convenient and usual (but not trivial)
limiting process leads to integral equations on
the grating surface. It can be noted that of cour-
se several integral equations can be obtained ;

they are not equivalent from both the theoretical
and numerical point of view ; some of them are
consequences of the other ones (for more or less

obvious reasons).

As an example, we studied [4.5] in detail the case
of a biaxjal lossless material for which the xyz

axes are the principal axes of the permittivity

tensor. In other words, we assume [€,] ¢to be a
€, 0 0

diagonal matrix [ O Ey 0 |. In this case the set
0 0 ¢,

of 1integral equations can be split into two sys-

tems. One of them contains only F, and F,, the
other one F, and Fy. This means that the problems
associated with TE and TM incident fields are
independent ; if the incident field is TE (or TM)
polarized, the total field is also TE (or TM).
Moreover, in the TE case, the grating is equiva-
lent to an isotropic grating of permitcivity €,.

On the contrary, in the TM case (except for uni-
axial media for which the optical axis is parallel

to ey and therefore €, = Ey) we_are led to a sys-

tem of two coupled integral equations for the
unknowns F, and F;. The kernels are given in 5],
as well as some numerical recipes used to deal
with the logarithmic singularities of some of
them. Numerical reliable data have been obtained

for sinuspidal or echelette profiles. An example

is given in [6] for € = 6.31, Ey - 6.81,

£, = 7.3.

x

We tried to use the I.M. for more general aniso-
tropic media, i.e. when [§,] 1is not diagonal in
the coordinate system. But we have to confess that
due to the cumbersomeness of the equations we
finally abandoned. Then we understood that it was
probably good, before to go on, to enter upon a
structural analysis of the problem. This gave rise
to rather academic and theoretical considerations
[4] that we are going to summarize ; may be they
can throw light on subsequent studies.




In order to describe the boundary value of a field

(E, ﬁ) , it 1s convenient to introduce the column
matrix F whose elements are the four functions F,.

Such a matrix 1is said to belong to the vector
space V? if it 1is associated with an outgoing

field propagating in the domain (€ (0 = + or -)
filled with the material of permittivity €, (if

1 =1) or [€§;] (if i = 2). Denoting by F and Fine
the columns associated with the total and incident
fields, the basic idea is that, for a given F'"¢,
the unknown F {is characterized by the proposi-
tion :

and 4)

(F - Finc) = v: F € VZ—

Thus, from the mathematic point of view, the pro-

blem consists in finding the intersectjon of V,~
and _the manifold (v; + Fin®) deduced from V: by
translation.

To this end, we can try to find adequate bases to
describe V] and V,”. This natural idea is nothing
other than the extension to anisotropic gratings
of techniques developed for isotropic gratings by
Yasuura and his collaborators [7]. In spite of all
the recent improvements suggested by Okuno, the
Yasuura type methods do not seem capable to com-
pete with integral or differential methods. We
think mnow that this is due to a bad choice of the
total family used to represent the field on the
profile ; fortunately, other choices are possi-
ble Promising work in this direction is now in
progress in our Lab.

In our previous paper [4], we prefered
stress on four projection operators P;, Py, Fz,
having the following properties

FEV, &P F=Fe PF=-0

FEV.™ (5")

1

e PF =F e PF=-0

P+ P = 1.

t

(5")

As briefly explained in [4], these idempotent ope-

rators P? can__be given explicitely from the
knowing of the nine Green’s functions ;- Propo-
sition (4) is therefore equivalent to

PI(F - FI"¢) =0 (6) and PjF = 0. (6")

Moreover, it can be shown that any column F can be
written as F = G + J, where G € VY,” and J is such

that J, = J; = 0. Clearly, PIF =0 + P}J, which
from (6), (5'), (5") and because F'"¢ € v,7,
yields

F=PjJ+Fine, (7
Then, from (6') and (7), we get

PP1J + P3FI"C = 0. (8

This last equation represents a system of four
integral equations for the two functions J, and
J, . Indeed, two of these equations are consequence
of the other ones and, for an arbitrary polariza-
tion, the problem can be reduced to the solving of
a _system of two integral equations for the two

principal unknowns J, and J,. Einally, F is given

by (7). This result can be considered as a genera-
lization to anisotropic gratings of the method
proposed by D. Maystre [1,8] for isotropic gra-
tings (one integral equation for one unknown).
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In this method that we have already used in the
sixties for isotropic gratings [l], we assume that
one obtains a good approximate of a field compo-
nent u(x,y) when keeping only N terms in expansion
(1). The field 1is represented by a column matrix
F, with 4N components which are the u, (y) associa-
ted with Ex, Ez, Hx, Hz ( Ey and are easily
deduced from these four functions). After some
algebraic manipulations, it turns out [6] that the
problem can be reduced to the numerical determina-
tion of F,(y) knowing that :

a) For 0 <y < a (a = max f(x))
dF,,

; - A(y) Fy (),

(9
A being a 4N X 4N matrix whose elements are given
from the Fourier coefficients of the nine x-perio-
dic elements Sij(x,y) of the permittivity matrix.

b) Fy (0) belongs to a certain 2N-dimensional sub-
space 60, which is a way to express the radiation
condition for y — —oo,

c) If we denote by F;“c the column associated with

incident field, then F,(a) - Fﬁnc(a) belongs
another 2N-dimensional subspace T; ; this is a
way to say that the diffracted field is given by
an outgoing plane wave expansion outside the
groove region.

the
to

The method we use to solve this classical problem
of mathematical physics has already been descri-
bed [6]. Indeed, numerous numerical recipes are
available to perform the numerical integration of
(9) taking into account the associated boundary
conditions b) and c¢). A computer code has been
written which deals with a sinuscidal grating pos-
sibly coated with an anisotropic_ layer. The per-
mittivity matrices can be "full matrices" they
have not to be diagonal as assumed in section 2
(I.M.). This program gives reliable results for
unlossy _materials but unfortunately numerical
experiments have shown that for lossy materials
(such as gyrotropic cobalt) the case of deep gra-
tings 1is much more difficult to solve especially
in TM polarization ([3,6]. Then, it appears that

the convergence of the solution with respect to N
is often very slow. Consequently two important

numerical studies have been performed in our labo-
ratory in order to try to improve the D.M. They
have been described in the Hamburg S.P.I.E.
meeting [6] but we have to confess that, in spite
of our efforts, we did not achieve great
triumphs In other terms, the game has not been
worth the candle. We are now convinced that nume-
rical difficulties will persist as long as the W,
basis will be used to describe the field according
to (1). Probably some Gibbs phenomenons are res-
ponsible for our disappointments.

To conclude on a less pessimistic touch, it must
be emphasized that whenever both I.M. and D.M.
have been capable to solve a given anisotropic

grating problem they have led to numerical results
which are in good agreement {9]. This is of course
a proof of the reliability of our computer codes.

4. Some further comments

Since 1980, a special attention has been devoted
to the so-called slanted-grating (anisotropic or
isotropic) by several authors, who claim that the
methods they use avoid the numerical integration
of a differential system. A slanted grating
(Fig.2) is a grating for which the permittivity is

a periodic function of X = £.T. In these circums-
tances, and putting o = (27 tgx)/d, 1t appears
that :



def

Gy (y) = Fy(y) exp(-inoy)
satisfies :
% ) ) 9"
=BG , '
iy v (Y
where the square matrix B no longer depends on y.

As soon as the elements of A have been written
down, this result is a straightforward generaliza-
tion to anisotropic structures of what is explai-
ned in [10] in a simple situation (isotropic gra-
ting in TE polarization).

by "
a /

I\ I

Fig.2. The slanted grating ; Z is a unit vector,

and the electromagnetic parameters only
depend on X.

Then, the solution 4is obtainable in terms of the
eigenvalues and the eigenvectors of B. This
method, primally developed for isotropic gratings
[11] has been extended to anisotropic gratings in
Osaka Prefecture University [12]. Recently, the
Japanese colleagues implemented the differential
method on their computer. Because we have good
relations with them, we know that, whatever the
method they use, they also have to face serious
numerical difficulties when dealing with lossy and
deep gratings.

Conclusion

In this paper, we tried to summarize all our
researches on gratings made with anisotropic mate-
rials. May be the reader will think that, in fact,
we mainly advertize for several papers already
published in optics litterature. But was it possi-
ble to do much better in only three pages ?

Appendix
Here are, from {2,3], the nine Green’'s functions
€, 00
g;j(x.y) when [62] - 0 EY 0
0 0Og,

814 exp(—ie x + ig_lyl)
nsZ 2d Zéx " "
b
812 = ———;—— sgn(y) exp(-ix x + 18 _1yl)
nsZ 2dkge,,
821 T 812
> 1 1% 5(y) (-ie x + 18_1lyD)
822 = - y exp(—ix x y
n€Z dike 28an " "
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i
&3 "Z

exp(—ie x + is, Iyl
n€Z 248,

823 = 832 = 813 ~ B39 ~ 0

In these expressions

o, - J0de, - ) €5,

B; - J(kgez B aﬁ)

The square roots are defined in the following
way :
z €C, mVz) >0  or Nz >o.

The function sgn(y) is equal to 1 for y > 0 and
-1 for y < 0.
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