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Summary : Three-dimensional electromagnetic problems require huge computing resources. One way to go through is to consider
periodic structures in order to reduce the investigation domain to one cell of the structure. The Green’s function which appears in this
case involves expansions which converge very slowly. Combining several representations of the Green’s function and using Shanks’
transform, we have developed an efficient algorithm. Using an integral method based on Harrington’s formalism, we model a
structure made of a non-periodic source covered or surrounded by metallic biperiodic grids. With in aim the design of compact
directive antennas in Ku band, we propose two structures. The first one is a Pérot-Fabry like cavity, and the second one uses the
properties of photonic crystals near the band edge.

Abstract : L'étude électromagnétique de problèmes tridimensionnels nécessite des ressources informatiques énormes. Une manière de
contourner cette difficulté est de considérer le cas de structures périodiques pour ramener le domaine d'étude à une période. La
fonction de Green bipériodique qui intervient alors fait intervenir des séries de convergence très lente. En combinant plusieurs
représentations de la fonction de Green et en utilisant la transformation de Shanks, nous avons mis au point un algorithme de calcul
très efficace. A partir du formalisme de Harrington, nous modélisons une structure constituée d'une source surmontée ou entourée
d'un ensemble de grilles métalliques. Deux types de structures permettent alors de modéliser des antennes directives compactes en
bande Ku : l'une utilise une cavité résonnante de type Pérot-Fabry, l'autre est basée sur les propriétés des cristaux photoniques en
bord de bande interdite.

I. INTRODUCTION.

Three-dimensional electromagnetic problems
require huge computing resources. One way to go
through is to consider periodic structures in order to
reduce the investigation domain to one cell of the
structure. Many numerical methods, such as integral
methods, require the computation of a Green’s
function. Unfortunately, the more straightforward
expressions of periodic Green’s functions lead to very
slow converging series. Numerous works have been
devoted to the Green’s function for one-dimensional
gratings. The acceleration of the convergence can
result from different transformations: Kummer’s
transform combined with Poisson’s transform,
numerical non linear transforms such as Shanks [1],
Levin or ρ-transform. An alternative solution is to use
the so-called Lattice Sums [2]. In this paper, we focus
on the efficient computation of the Green’s function for
doubly periodic arrays (used for instance in crossed
grating problems). Fewer works concern this problem.
We combine the techniques reported in the earlier
studies by Jorgenson et al [3] and by Singh et al [4]. By
this way, we obtain different methods to compute this
Green’s function. None of these methods is optimum
for all positions of the observation point. A systematic
numerical study allows us to define the regions of
space where each method offers the best performances.
The resulting Fortran subroutine takes these
considerations into account in order to choose
automatically the most efficient method [5].

With in aim the design of compact directive
antennas in Ku band, we propose two structures made
of metallic biperiodic grids which form a photonic
crystal. The first one is a Pérot-Fabry like cavity, and
the second one uses the properties of photonic crystals

near the band edge. In this case, we use an adaptation
of the integral method based on Harrington's formalism
[6], taking advantage of our Green's function.

II. GREEN'S FUNCTION.

1. Spatial and spectral forms

The doubly periodic Green's function described
here is the solution verifying an outgoing wave
condition of the Helmholtz equation with doubly
pseudo-periodic elementary sources, and writes in the
following "spatial" form:
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where nmr  is the distance from the “source”  located at

point (n xd ,m yd ,0) to the observation point (x,y,z),

xd  and yd  are the periods along x and y axes, 0α  and

0β  are the pseudo-periodicity coefficients, λπ= /2k

where λ  represents the wavelength. From calculus
using Fourier series, we get from (1) another expansion
for G,  that we denote by "spectral" form:
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and choosing nmγ  or inm /γ as a positive number.



2. First mixed form

Let us denote nmS1  the term of the series (1). We
obtain another series by subtracting and adding a term

nmS1
~

 where nmr  is replaced by a slightly different
value:
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, where u is a positive parameter to be optimized. The

series whose term is nmnm SS 11
~−  converges faster than

the initial one. The series whose term is nmS1
~

 is
transformed in a "spectral" form similar to (2):
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Note that the parameter u gives a z-translation which
enables us to get a fast convergence.

3. Second mixed form

A similar technique is used to obtain a fourth
expression of G, starting from (2). Let us denote nmS2

the term of the series (2). We obtain another series by

subtracting and adding a term nmS2
~

 where nmγ  is
replaced by a slightly different value

2222~
mnnm v β−α−−=γ , where v is a real parameter to be

optimized. The series whose term is nmnm SS 22
~−

converges faster than the initial one. The series whose

term is nmS2
~

 is transformed in a "spatial" form similar
to (1):
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The convergence is due to nmnm rrv /)exp(− .

4. Numerical technique and results

On the two mixed forms, we use the Shanks’
transform [1] in order to accelerate numerically the
convergence. It appears that none of previous
expansions is able to give fast and accurate results for
all values of the opto-geometrical parameters (the most
sensitive ones being the position of the observation
point, the wavelength and the periods xd  and yd ).

Fortunately, it is always possible to find at least one
expansion giving satisfactory results in each particular
case. From numerous numerical investigations, we
have been able to find empirical rules for the
determination of the best expansion to use.

In figure 1a, we plot the percentage of points that
do not meet the accuracy criterion, i.e. the obtained
accuracy is less than the requested one ε. The
parameters are 1=λ== yx dd , )4/sin(0 π=α k ,

00 =β . The Green’s function is computed over 10,000
points equally spaced in x and y inside the first period,

and logarithmically spaced from 610−=z  to 1=z .
The second mixed form with Shanks’ transform gives

good results as long as 610−>ε , but the number of
false results increases as ε decreases. Our numerical
code gives some false results especially for very small
values of ε . The most robust method is given by the
first mixed form with Shanks' transform, but it is not
the faster, as it can be seen on figure 1b. From this last
point of view, our code offers the best performances.
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Fig 1a: percentage of inaccurate results for the various cases
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Fig 1b: Computation time for the various cases

The reader interested in more details can refer to our
paper [5].



III. ANTENNA MODELING.

Using an integral method based on Harrington’s
formalism, we model a structure made of a non-
periodic source (patch, monopole,…) laying on a
ground plane and covered or surrounded by metallic
biperiodic grids. These grids represent a photonic
crystal and are made of infinitely conducting wires
whose diameter is small compared to the wavelength λ.
The field emitted by the source in free space is
represented by a plane wave packet using FFT. Each of
these plane waves gives rise to a pseudo-periodic
problem, i.e. a classical grating problem.

The first structure is based on a Pérot-Fabry like
planar resonant cavity. A ground plane acts as one of
the mirror of the cavity, whereas the opposite mirror is
made of two metallic grids. The parameters of these
grids are optimized in order to obtain a suitable
directivity for the emitted field: mm8.5== yx dd ,

radius of the wires 0.26mm, spacing between the
ground plane and the first grid: 9.34mm, spacing
between the first and the second grids: 5.8mm, for
λ = 21.4mm. This structure is excited by a patch
located in the cavity. Fig. 2 gives a sketch of patch,
showing the feeding point, and the principal direction
of the surface currents (arrows). θ and ϕ are the usual
spherical coordinates angles. The radiation patterns
will be drawn in the two planes x = 0 and y = 0. Note
that due to the symmetry of the patch, the radiation
pattern will be symmetrical in the plane y = 0, but not
in the plane x = 0.
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z
Plane y = 0,
ϕ = 0 or 180°Plane x = 0,

ϕ = ±90°

eϕ = ex
eϕ = ey

Fig 2: Notations.

Fig. 3 shows the radiation patterns of the device in dB
scale. It shows that the emission is concentrated in a
narrow lobe. The arrays of wires do not affect the
polarization of the emitted field, which stays linearly
polarized in the lobe. The half-power beamwidths are
2×5.1° in the plane y = 0 and 2×5.5° in the plane x = 0.
Note that all the radiation patterns are in arbitrary units.
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Fig 3: Radiation patterns of the Pérot-Fabry like structure.

The second solution uses the specific properties of
a metallic photonic crystal at the band edge. Metallic
photonic crystals present two kinds of bandgaps: a
large low-frequency gap, and smaller gaps for higher
frequencies. In this study, we make use of the filtering
properties of the large low-frequency gap. A pretty way
for the investigation of these filtering properties is
based on the dispersion diagrams of Bloch modes [7].
By this way, we have determined convenient
parameters for the structure. The resulting structure is
made of a ground plane covered by a photonic crystal
made of 6 metallic crossed grids. The radiative element
is an embedded patch.

In this case, the parameters are
mm8.5== yx dd , radius of the wires 0.277mm,

spacing between the ground plane and the first grid:
3.4mm, spacing between each of the grids: 6.8mm, and
λ = 21.1mm. Figures 4 and 5 show the radiation
patterns of the device in dB scale. Here again, the
emission is concentrated in a narrow lobe: the half-
power beamwidths are 2×2.0° in the plane y = 0 and
2×2.6° in the plane x = 0.
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Fig 4: Radiation patterns of the photonic crystal structure.
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Fig 5: Same as Fig.4, enlarged scale.

CONCLUSION

A complete modeling of antenna devices requires
the computation of the impedance. The method used in
this paper is not able to give this information. This is
the reason why we are presently developing another
way to circumvent the numerical problems linked with
the large number of unknowns in the 3D structure. The
idea is to take advantage of the partial block-Toeplitz
structure of the impedance matrix involved in the
Harrington’s formalism, combined with the use of an
iterative solver. Compared with the FFT decomposition
described in section III, this technique will allow us
first to take into account the interaction between the
source and the arrays of wires, and second to model a
finite structure.

An experimental study is also in progress, and we
expect that we will be able to confirm in the next
months the predictions of this work.
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