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Abstract

In order to investigate the properties of three-
dimensional metallic photonic crystals, we have de-
veloped an adaptation of Harrington’s method for
scattering by thin wires. Due to the peculiarity
of photonic crystals, we have been led to renounce
to two assumptions: the current intensity in the
wires 1s not assumed to vanish at a free extrem-
ity of a wire and the Kirchhoff law at a junction
between wires is not used any longer. It is shown
that, paradoxically, the numerical implementation
is simplified by these changes and that our method
provides a better convergence of the results. Using
our code, the properties of 3D metallic photonic
crystals are investigated and compared with those
of 2D crystals.

1 Introduction

The last few years have seen a growing interest in
the theoretical and experimental studies of pho-
tonic band structures [1-8]. The basic feature of
these structures is to provide a complete control
of light propagation. Dielectric photonic crystals
are able to inhibit spontaneous emission of light
and could permit the construction of zero thresh-
old lasers and single mode light emitting diodes.
In this paper, we are dealing with another kind
of photonic band structure: the metallic photonic
crystal. It is well known that dielectric photonic
crystals present gaps limited to one octave or even
less (see for instance [3,6,8,9] for some examples
of such gaps for doped or non-doped crystals). In
contrast, metallic photonic crystals generate gaps
extending from the null frequency to a cut-off value.

Another big difference is that metallic crystals are
mainly intended to work in the microwaves region,
for instance as efficient reflectors or resonant cav-
ities (see [10-16] for more details), and dielectric
photonic crystals are expected to work in the opti-
cal region.

The metallic crystal we are concerned with in this
paper is made by a three-dimensional (3D) finite
periodic array of perfectly conducting wires. These
wires are parallel to the three axes of a cartesian co-
ordinates system and the elementary cell is a cube,
but the computer code we have made could inves-
tigate the properties of more complicated metallic
photonic crystals, presenting other kinds of sym-
metries. The theory we have used is based on the
Electric Field Integral Equation (EFIE) proposed
by Harrington for wire antennas [17]. Indeed, the
wires radius is assumed to be very small compared
with the wires length or with the wavelength of the
incident field. A Galerkin method with piecewise
linear (triangular) symmetric basis and test func-
tions is used. Classically, it is assumed that the
current vanishes at a free extremity of a wire and
thus the basis functions are null on this extremity.
In this paper, we explain why this assumption is
questionable, at least when the length of a wire is
smaller than half a wavelength. Hence, we renounce
to this assumption and we add to the symmetrical
triangular finite elements a saw-tooth function with
discontinuity at the end of the wire. In the same
way, it 18 no more assumed that Kirchhoff’s law is
satisfied at a junction between wires [18] and simi-
larly, a saw-tooth function is used at an extremity
of a wire, with discontinuity on the junction. It is
quite interesting to notice a paradoxical result: the
numerical implementation is simpler after renounc-
ing to these two hypotheses. The computer code is
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carefully checked using many classical tests and we
verify that the current can significantly differ from
zero at the ends of a wire.

It is shown that the transmission gap of the struc-
ture starts at zero frequency. Moreover, compar-
ing the numerical results with those obtained from
computer codes dealing with two-dimensional (2D)
metallic photonic crystals [8,19] lead us to a very
important conclusion: the two-dimensional model,
much simpler to handle, is able to bring vital infor-
mations on the properties of these structures. As
a consequence, the conjecture according to which
a metallic photonic crystal can simulate a homo-
geneous material with a plasmon frequency in the
microwaves region [20], already shown for 2D crys-
tals [21], should extend to 3D metallic crystals.

2 Basic equation

Throughout the paper, we use the complex nota-
tion, assuming a time dependence in exp(—iwt).

An incident plane wave with electric field Ei of
wavelength A = 27 /k propagating in vacuum illu-
minates a system of W perfectly conducting wires
with circular cross-section of radius r < A.
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Figure 1: Notations.

We define (Fig. 1) the extremities F; and Fj
(i € [1,W]) of each wire (the choice of the extrem-
ity called F; can be made arbitrarily). A junction
will always be considered as an extremity of each
of the connected wires. The axis C; of each wire is

oriented from F to F; and i(M) is the unit tan-
gent vector at a point M of C, C being defined as
the set of C;. As in the work of Harrington [17],
we assume that the current can be approximated
by filaments of current I(M') on C, I(M') taking
algebraic values deduced from the orientation of C
at point M’. In the same way, the boundary con-
dition (the tangential value of the total field E(P)
must vanish at a point P placed at the surface of
the metal) is applied only to the axial component
of E(P) at the wire surface. Assuming that M is
the point of the wire axis in the same cross-section
as P, the incident field EZ(P) Is approximated by

its value on the axis £(M), and |1W"| by [17]:

PM |~ R=/MM'2+? (1)

The basic equations given by Harrington yield:

)
weg Je
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(M)

— —

= {(M).E\ (M), (2)
where:
n _ exp(ikR)
GM,M") = AR (3)

3 About some assumptions on
the current intensity

In the theory of Harrington [17], the following as-
sumption is made: “It should be noted that the end
point of a wire is treated as the center of an in-
terval with zero current. This is suggested in Fig.
4.1.b by starting the intervals one-half subsection in
from the wire ends. It is mathematically equivalent
to the boundary condition I = 0 at the ends of a
wire”.
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Figure 2: About the assumption of an intensity
equal to zero at an extremity of a wire. Charges
+Q and -Q are created at the extremities by the
static electric field &.

We do not adopt this assumption. Indeed, let us
consider the wire represented in Fig. 2, in a static
electric field £ (of course the complex notation is
abandoned in this example) parallel to the axis of
the wire. We assume that this wire is not connected
to other ones. In order to establish a total field
which vanishes inside the wire, electric charges +¢
and —@) will be created on both extremities of the
wire. These charges will generate inside the wire
an electric field —&.

Now, let us replace the static field g by an har-
monic field é_"cos(wt). In the low frequency domain,
one can consider that the charge Q(ty) generated
at t = tg on the extremity of the wire will be equal
to the charge which would be generated by a static
electric field é_"cos(wto). The fact that the charge
Q(t) is not constant implies that the current in-
tensity at both extremities of the wires does not
vanish, and this current is an increasing function of
the section of the wire.

Of course, this reasoning is made in the quasi-
static regime, where the current is constant be-
tween the extremities of the wire. Even though this
remark does not hold in high frequency, it is not
clear that the intensity at extremities is negligible.
In the same way, we do not assume the conserva-
tion of intensity at a junction between wires since
the charge on the junction may vary with time.

At afirst glance, one could think that renouncing
to these assumptions complicates the numerical im-
plementation. Paradoxically, it is not the case. In-
deed, it must be observed that many authors have
been led to introduce continuations of the wires at
the extremities, or at the junctions [22,23]. If these
continuations are suppressed, the system of equa-
tions to be solved does not constitute a square sys-
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tem. It will be shown that this difficulty completely
disappears in our numerical implementation.

4 Numerical implementation

First, let us come back to the approximation of
PM’ made in Eq. (1). Tt is obvious that this ap-
proximation is convenient for a precise calculation
of G(M,M') when MM' > r. When MM’ and
r have the same order of magnitude, this approxi-
mation remains very good provided that M M’ and
M P are nearly orthogonal. This condition is filled
when M and M’ are located on the same wire, the
radius of curvature of this wire being much greater
than . On the other hand, this approximation may
make problem when M and M’ are located on two
different wires. However, Eq. (1) has been used in
that case as well. The main reason is that a more
precise calculation of PM' would lead to consider-
able complications. The second one is that, in that
case, even the basic approximation introduced in
the theory (the intensity in the wire is replaced by
a filament of current) can be questioned. This re-
mark explains why we have performed a thorough
validation of our numerical results.

T Tme1 Tj TN 1
M m Mm+1 M m+2 M m+N -1
F. F

Figure 3: Triangular finite elements on the ' wire.

In order to implement Eq. (2) on the computer,
the intensity is projected on finite elements 7, de-
fined in Fig. 3, where, for simplicity, the wire is
drawn as a linear segment. On each wire, a set of
N; equally spaced points M; is defined. The index
j is running continuously from the first point Fy
of the first wire to the last one F};, of the W-th
wire. This set of points allows us to define a set
of triangular finite elements 7} represented in Fig.
3. In contrast with the other finite elements, which
are symmetrical, the finite elements placed at the
extremities of a segment have a saw-tooth shape.
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The finite element T;,, decreases linearly from a unit
value at M,, = F; to a zero value at M,41, while
Ton4N,—1 Increases from zero at Mp,4n,—2 to 1 at
Mpyn,—1. It is worth noticing that a connection
point between ¢ wires is represented by ¢ extremi-
ties of finite elements. Hence, the total number of
finite elements 1s denoted by Nio¢. The intensity is
now given by:

Ntot

I(M) = InTn(M) (4)

It is crucial to notice that no condition is enforced
on the values of I, corresponding to points M,
located at the extremities of the wires since we do
not assume that the intensity vanishes at a free ex-
tremity of a wire, or that the intensity is conserved
at a connecting point.

Using a Galerkin method, Eq. (2) is projected
on the same set of finite elements and we get Vn €

[L Ntot]i

Ntot
1 /
: In | [ Tov) T (M
o X | [ron .o
dG
—— (M, M"Yy dM' dM
dM( ) )
Ntot
S fm//{(M).{(M') T (M) Ton (M)
m=1 cJC
G(M, M') dM' dM
= [fon.En 00 aM (5)
c
where T;n(M’) stands for the derivative
dT(M")/dM'. By integrating by parts the

first term of the left-hand side of (5), we deduce
finally a linear set of N, equations with Ny
unknowns I,,:

Ntot
¥n €1, Neotl, D Anmln =S,  (6)
m=1
with: .
An,m = ._ Vn,m - Z'W/'LOVVn,m (7)
1Wey
Vi ://T,;(M) T, (M') G(M, M') dM' dM
CJC

(8)

Wom :/C/C{(M).{(M’) Tn(M) Ty (M)
G(M,M"ydM' dM  (9)

(10)

Sp = / [(M).E{(M) T,(M)dM

At a first glance, the expression of V;, ,,, given by
Eq. (8) makes problems since the derivative T,In Is
not defined (in the sense of functions) at points M,
located at an extremity of a wire, due to the saw-
tooth shape of the finite elements on these points.
A possible answer to this problem is to consider 7"
as a distribution including a Dirac distribution. In
practice, it is much simpler to interpret the defi-
nition of these finite elements in a new way. We
consider that the finite element 7;,, associated with
the first extremity of a wire is defined as the limit
value when u — 0 of the finite element represented
in Fig. 4.

Tm (M)

UM

m

M m+1

Figure 4: Representation of a finite element placed
at the first extremity of a wire taking into account
the possible non-zero value of the intensity at the
end of the wire.

A symmetrical interpretation 1s given to the fi-
nite element associated with the second extremity
of a wire. The integrals in the right-hand member
of Egs. (8), (9) and (10) are made by using a small
value of u. Of course, it has been verified that the
I, tend to a limit value as u tends to zero. In prac-
tice, it suffices to take for u a value less than 1073
times the width of a symmetrical finite element.

The double integrals are achieved numerically by
using an adaptive algorithm proposed by Berntsen
et al [24], [25] to avoid any a priori approxima-
tion. This algorithm permits a numerical integra-
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tion over hyper-rectangular regions of multiple in-
tegrals by means of a globally adaptive subdivision
strategy. The reliability of the integration is im-
proved by a careful evaluation of the error at each
step of the algorithm and in each dimension, the
user can choose among several integration rules.
For our calculations, we have chosen an integra-
tion rule of polynomial degree 7. This rule gives a
rapid convergence for such double integrals.

5 Validation of the theory

We have checked the validity of the results for two
kinds of scattering objects. The first one is a rec-
tilinear wire of finite length and the second one a
system of three connected wires. The first test was
a test of convergence of the results when the num-
ber N, of finite elements is increased. The length
of the single wire was fixed to 0.3X and its radius
to 1072X. The incident wave propagates in a di-
rection perpendicular to the wire, with an electric
field parallel to the wire.

Figure 5 shows the modulus of the intensity for
4 values of Ny, the number of points per wave-
length. The curves obtained for 10 < Ny < 50 are
nearly identical. When N exceeds the value of 50,
oscillations begin to appear at both extremities of
the wire. These oscillations become stronger and
stronger when N is increased (Fig. 5b). In our
opinion, the origin of the divergence for large values
of Ny, already found by other authors [18], must be
found in the basic approximation: the current in-
tensity cannot be approximated by a filament of
current located on the wire axis any longer. In-
deed, the calculation of the double integrals in the
right-hand members of (8) and (9) can be inter-
preted as the calculation of the interaction between
current intensities located on the ranges of finite el-
ements 7;, and T,,. If these ranges are very close to
each other (for instance if they are neighbors) and
if the width of the finite elements have the same
order of magnitude as the diameter of the wire,
obviously this basic approximation fails: a calcula-
tion of matrix elements V), ,, and W, »,, made by
translating one of the filaments of current towards
the surface of the wire would provide very different
results. This remark inclines us to think that the
phenomenon of divergence of the results for large
values of N) is strengthened when r/X increases.

10°

154

0 T T
015 -01 -0.05

I I I
0.05 0.1 0.15

I
(op
Figure 5: Convergence of the modulus of the cur-
rent along a single wire of length 0.3 and radius
7 = 1072X for various values of the number of ele-
ments per wavelength Ny: a) Ny = 20 (solid curve)
and Ny = 40 (dashed curve); b) Ny = 60 (solid
curve) and Ny = 100 (dashed curve).

This conjecture has been confirmed by our nu-
merical results. For a radius r = 1072\, the limit
(Ny = 50) was reached for a distance d between
two discretization points equal to A/50, value of
the diameter of the wire. If we adopt this rule of
thumb, and recalling that 10 points of discretiza-
tion at least per wavelength are necessary, we can
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conjecture that the method will be unable to deal
with wire diameters larger than A/10. Thus we
should restrict our calculations to wires such that
7 < A/20. This prediction was fully confirmed
by the reciprocity [26] and energy balance crite-
ria [27]. These criteria are satisfied to within 1% in
the range of /X specified previously, provided that
the requirements Ny > 10 and 2r < d are satisfied.
A vital remark must be made looking at Fig. ba:
the intensities on both sides of the wire are not
negligible. On the other hand, it can be seen in

10°°

30
25—
20—
15+
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5—

0 T T T T T \
015 -01 -005 00 005 01 015

Figure 6: The same as Fig. 5 (a), but for N, = 40
and r = 1074\

Fig. 6 that the relative value of the intensity
on both sides of the wire (compared with the in-
tensity at the middle) tends to zero when r/A de-
creases, accordingly to the remark about the quasi-
static regime made in section 3. The same con-
clusion holds when the length of the wire is in-
creased: the relative value of the intensity on both
sides decreases when the length of the wire exceeds
A/2 (resonant antenna), even though the absolute
value of these intensities keeps the same order of
magnitude. This explains why the current at both
extremities can be neglected in most cases of an-
tennas. In the present paper, we are not concerned
with antennas but with photonic crystals, and we
will see that the wires can have lengths smaller than
half a wavelength, thus the currents at extremities

of the wires cannot be neglected in general.

We found it interesting to check the importance
of the classical assumption (the current vanishes at
both extremities of the wire) for the scattered field
or for the value of the current at other points. With
this aim, we represent in Figs. 7 and 8 the current
intensity and the bistatic cross section of the wires
considered in Fig. 5 and 6.

*10°
15—
10
57
0 T \
-0.15 0.0 0.15
(a)
*10°°

0.15

Figure 7: Modulus of the current along a single
wire of length 0.3\ and radius (a): r = 1072\ or
(b): » = 107*\. The solid curve is obtained from
our method and the dotted curve by assuming the
current intensity to vanish at both extremities.
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In these figures, the solid curve is obtained from
our method whereas the dotted line represents the
results obtained by eliminating the two saw-tooth
finite elements at the extremities of the wire. With
this change, we impose the current intensity to van-
ish at both extremities.

0.05—
0.04—
0.034
0.02+

0.01+

0.0 = — e
180

*10°
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1.0

0.5

0.0 T T T ™
180

Figure 8: The same as figure 7, but for the bistatic
cross section.

In Fig. 8, § denotes the angle between the wire
and the direction of observation. Since the theory
assumes that the current in the wire is replaced by a
filament placed on the axis, the scattered intensities
depend on # only.

*10

our method
5 ; N»= 60
Vil —&— Nj=40
45| N,=20
0 \
-0.15 0.0 0.15

Figure 9: Comparison of the modulus of the cur-
rent obtained from our method and from a method
assuming the current intensity to vanish at both ex-
tremities of the wire. The parameters are the same
as in Fig. 7, with r = 1072\, For our method,
Ny = 40.

It is quite clear that the results at r/A = 107%
are very close to each other, in contrast with the
results at r/A = 1072 Figure 9 shows the same
results as Fig. 7 (with /X = 1072) but the curves
of current intensity have been drawn for increas-
ing values of N, from 20 to 60, at least when the
surface current is assumed to vanish at both ex-
tremities. The reader can control in Fig. 5 that
the results obtained with our method (i.e. no as-
sumption about the value of the current at the ex-
tremities) and repeated by the solid line in Fig. 9
are much more stable than the ones obtained with
the usual approximation. It is worth noting that
the results obtained from the classical hypothesis
become closer and closer from our results as N
is increased. Unfortunately, numerical instabilities
on both sides of the curve begin to appear if Ny
exceeds the value of 60 but Fig. 9 clearly shows
that our method converges much more rapidly and
is able to provide accurate results for moderate val-
ues of Ny. It can be concluded that the assumption
of a current intensity which vanishes at extremities
may have catastrophic consequences on the numer-
ical results for current intensity on the rest of the
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wire or for scattered field.

In our numerical implementation, we did not as-
sume that the current intensity was conserved at a
junction between wires.

0.3

wire 3

Figure 10: Scheme of a system of three connected
wires with a junction making a sharp end.

We consider in Fig. 10 a system of three wires of
length 0.3\ and radius 1072 lying in the zy plane
and connected in O. FEach wire is very close to the
x-axis, the incident plane wave propagating in the y
direction. We have taken the incident electric field
parallel to the x-axis, thus charges should accumu-
late at point O. Figure 11 gives the intensity on
the wires. It 1s to be noticed that the modulus of
the sum of the algebraic intensities at the junction
has been found to be equal to 0.4.1073 which is not
negligible compared to the modulus of the intensity
on each wire at the same point, for instance about
2.1073 for wires 2 and 3.

6 Numerical study of three-
dimensional metallic pho-
tonic crystal

In contrast with two-dimensional crystals which are
made with parallel wires, three-dimensional crys-
tals exhibit interconnected wires in the three di-
mensions. The aim of this section is to investigate
the properties of these more complicated structures
and to compare them to the properties of two-
dimensional crystals. The computation for 3D crys-
tals is done with our code based on the numerical
method described in section 4. We are dealing with
the three-dimensional crystal depicted in Fig. 12.

1998 8

0.2

0.25

Figure 11: Modulus of the current along the three
wires of Fig. 10, from the junction to the extremity
(solid curve: wire 1, dashed curve: wires 2 and 3).
Intensity on wire 2 has been found to be the same
as intensity on wire 3. The sum of the algebraic
intensities at the junction (z = 0) is equal to 0.4 .
103, thus not negligible compared to the intensity
on each wire.

The crystal has a cubic geometry, with a period
equal to unity in the z, y and z directions. The
radius of the wires is equal to 1072,

6.1 Energy maps inside the crystal

In order to illustrate qualitatively the main prop-
erty of metallic photonic crystals, we have drawn
maps of the electric energy |E_’|2 inside the crys-
tal for two values of the wavelength, the first one
(A = 1.25) outside the gap, the second one (A = 10)
inside. The incident electric field is perpendicular
to the figure (parallel to the z-axis). For each wave-
length, the results obtained for the 3D model have
been compared with those obtained from two sim-
plified models:

o the simplified 3D model (S3D) where all the
wires of the 3D crystal have been removed, ex-
cept those which are parallel to the incident
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Figure 12: Three dimensional metallic cubic crystal
centered at the origin and having 4 x 4 x 4 = 64
elementary cells.

electric field. Thus, this model replaces the
3D crystal by a set of parallel wires of finite
length.

e the 2D model, where the wires of the S3D
model are assumed to have infinite length.

The S3D model has needed the use of the same
computer code as the 3D model, but the compu-
tation times is much smaller since the total length
of the set of wires is reduced by a factor of 3. On
the other hand, the 2D model is much simpler to
handle, and we have used a computer code devoted
to 2D photonic crystals based on a rigorous theory
of scattering [19]. Using a desktop workstation, a
calculation at A = 10 needed computation times of
the order of 30 minutes for the 3D model, 3 min-
utes for the S3D model and about one second for
the 2D model. In fact, it emerges that the compu-
tation time required by the use of the 3D model is
almost entirely devoted to the computation of the
integrals in eqs. (8) and (9). Obviously, many of
these integrals are identical, due to the periodicity
of the structure. Taking this remark into account,
we have been able to reduce the computation time

to about 20 seconds for the 3D model and to 3 sec-
onds for the S3D model.

Figure 13: Energy map for A = 1.25 for the crystal
of Fig. 12 with the three models: the 3D (a), S3D
(b) and 2D (c) models. Polarization and direction
of the plane wave are provided by Fig. 12. Light
propagates through the structure and the maps are
very similar.
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Figure 14: Same as Fig. 13 but for a wavelength
A =10, i.e. inside the band gap.

Figure 13 (a) shows the map of |E|? in the plane
z = 0.05 close to the symmetry plane yz of the
crystal (this small shift allows us to avoid the wires
placed in the symmetry plane, where the electric

field vanishes). The maps of Fig. 13 (b) and 13 ()

give the same results for the S3D and 2D models.
At A = 1.25, the three models give very close re-
sults: light propagates through the structure. On
the other hand, Fig. 14 shows that the field does
not penetrate the crystal at A = 10. The results
provided by the three methods remain very close
for the field inside the crystal.

2.00
1.80

Figure 15: Same as Fig. 14 but for a different po-
larization: the electric field 1s parallel to the y-axis.
For the S3D and 2D models, the incident field is
perpendicular to the wires, thus the diffraction is
negligible and the field modulus is constant. Hence
the maps are not given.

Figure 15 gives an explanation. In this figure, the
parameters remain the same as in Fig. 14, but the
polarization of the incident light has changed: the
incident electric field has been rotated by 90°, in
such a way that it becomes orthogonal to the wires
in the S3D and 2D models. As a consequence, the
diffraction of the field by the wires 1s very small,
1. e. the crystal is transparent and the field can
penetrate inside it. On the other hand, in the 3D
model, the electric field is parallel to another set of
wires and nothing is changed. This property clearly
shows the advantages of 3D crystals: they can con-
trol the propagation of light in any direction and
any polarization. Nevertheless, a very interesting
conclusion can be drawn from this section: the 2D
model, which is much simpler than the 3D model,
1s able to provide accurate predictions on the be-
haviour of 3D metallic photonic crystals, provided
the incident electric field is parallel to an edge of
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the elementary cubic cell. It will be shown in the
next subsection that the gap of 3D crystal is almost
independent of the direction of polarization of the
incident light, thus that the use of the 2D model
when the above condition is satisfied gives reliable
predictions on the gaps of 3D crystals whatever the
polarization will be. This i1s all the more interest-
ing since numerous investigations have been made
on 2D metallic photonic crystals. In particular,
it has been shown from homogenization processes
that 2D crystals can simulate a homogeneous ma-
terial with a plasmon frequency in the microwaves
region, which can be predicted accurately from a
closed form formula [21]. Tt can be conjectured that
the same formula can give the plasmon frequency
of 3D crystals with a good precision. This result
confirms the conjecture of specialists of Solid State
Physics on the behaviour of 3D metallic photonic
crystals [20].

6.2 Photonic band gaps

Figure 16: Mean value of the energy inside the crys-
tal vs. wavelength. The average is taken over 64
points near the middle of the crystal. Solid curve:
the incident wave is described in Fig. 12. Dashed
curve: the wavevector is arbitrary chosen (see text).

The penetration of light inside the 3D crystal is
estimated by computing the mean value of the

squared modulus of the electric field over 64 points
located near the middle of the structure. The solid
curve in Fig.16 shows this mean value versus the
wavelength when the incident electric field is paral-
lel to one edge of the crystal, the incident wavevec-
tor being parallel to another edge (see Fig. 12). At
wavelengths greater than 5, propagation inside the
crystal becomes impossible. With the same inci-
dent wavevector, a rotation of the incident electric
field would not change the gap. Indeed, an arbi-
trary polarization can be decomposed into two or-
thogonal polarization vectors parallel to the wires.
On the other hand, it is not obvious that an arbi-
trary incident wavevector produces the same gap.
The dashed curve in Fig. 16 shows that the cut-off
wavelength remains nearly the same when the in-
cident wave vector lgl and the incident electric field
are respectively parallel to the vectors @ and ¢ given

by:
(11)
(12)

U=ey+ey+e;

<

=&y + &y — 2¢,
€, €y and &, being the unit vectors of the axes.

Thus, the transmission gap remains nearly inde-
pendent of the polarization and wavevector of the
incident wave, a feature which makes 3D crystals
more interesting than 2D crystals. Of course, this
property could make it interesting to use 3D metal-
lic photonic crystals for antennas, waveguides or
cavities design.

6.3 Gaps of doped crystals

In order to get a doped crystal, three connected
wires have been removed from the middle part of
the 3D crystal shown in Fig. 12. Figure 17 shows
the mean value of |E|2, computed as in subsection
6.2, the incident wave being given by Fig. 12 (in-
cident wave vector and polarization parallel to the
edges of the crystal). A peak at A = 4.5 appears in
the gap of the doped crystal, close to the edge of
the gap. This peak is caused by the existence of a
resonant mode of the cavity made inside the crystal
by removing the three wires. It is worth noticing
that this peak is not very narrow. This fact can
be explained easily. The photonic crystal is small
since 1t contains only 4 x 4 x 4 elementary cells.
Thus, the cavity inside the crystal have important
losses and the resonance cannot be very sharp. Un-
fortunately, time computation and memory storage
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Figure 17: Dotted curve: same as Fig. 16 but for
a doped crystal obtained by removing 3 connected
wires in the middle of the crystal; solid curve: same
as Fig. 16. The resonant excitation of a mode of
the cavity induces a peak in the transmission at
wavelength A = 4.5.

do not allow us to perform calculations for larger
crystals. Nevertheless; Fig. 17 shows that cavities
inside a metallic crystal exhibit the same effect as
for dielectric crystals: peaks may appear inside the

gap.

7 Conclusion

In the first part of the paper, an adaptation of the
theory of scattering by thin wires developed by Har-
rington has been presented. The originality of this
adaptation lies on two points: we do not assume
any more that the current vanishes at free extrem-
ities of wires and we do not use Kirchhoff’s law at
junctions between wires. Thanks to this adapta-
tion, we are able to deal with wires with lengths
smaller than half a wavelength and moreover, the
numerical implementation is simpler than that of
the classical method. Using our computer code,
we have been able to investigate the properties of
3D metallic photonic crystals and to compare these
properties with those of 2D crystals. Even though
the 3D crystal is the only one which presents gaps

nearly independent of the wavevector and polar-
ization of the incident wave, it emerges that, for-
tunately, the 2D model allows one to investigate
with a reasonable accuracy the main properties of
3D crystals, specially the cut-off wavelength of the
transmission gap. This is all the more interesting
since the numerical study of 2D metallic crystals is
much simpler and since formulae in closed form are
able to predict the location of the gap with a good
precision [21].

The main problem encountered in our study of
3D crystals is the computation requirements of our
code in memory storage. We are trying to overcome
this problem by using models of crystals periodic
(i.e. of infinite extend) in one or two directions.
The periodicity of the problem in these directions
can be used in order to increase the size of the crys-
tal in the other ones. Finally, we are also trying to
generalize to 3D crystals the mathematical homog-
enization process already achieved for 2D crystals.
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