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Abstract. The paper is devoted to a theoretical and numerical study of
lacunary gratings, namely, gratings where some lines are missing. From a
rigorous electromagnetic theory of scattering by this structure, the limits of
validity of three approximate and simple theories are given. These approximate
theories are used in order to predict some interesting properties of lacunary
gratings. Finally, we try to give a quantitative answer to the following question:
how to detect the lacunary defect ratio from intensity measurements?

1. Introduction

The study of phenomena generated by the transition between order and
disorder is one of the most fascinating topies of Modern Physics. In the frame
of Optics and Electromagnetics, many papers have been devoted to this subject in
recent years. Most of these papers are devoted to the phenomena of enhanced
backscattering [1-3], and localization of light [4-10].

A continuous transition from order to disorder can be obtained by considering
quasi-gratings [11], rough surfaces generated by a random perturbation of a
periodic profile [12], etc.

In the present paper, we deal with another example of such structures: the
lacunary grating. Such a grating is obtained by removing some rods in a grid-
grating. From a practical point of view, grid-gratings can be used for reduction of
Radar Cross Section, thanks to their remarkable absorption properties. An
application of the study will be the estimation of the mismatch between expected
and actual performances of such devices provoked by construction defects.

The numerical results are obtained from a rigorous theory of scattering by a
finite number of two-dimensional (2D) cylinders [13]. Comparisons are made
between the rigorous numerical data and those derived from simpler but
approximate theoretical methods.

2. The rigorous theory in outline

We consider the lacunary grating represented in figure 1. A grating of period d
containing a finite number N of rods has been modified by removing N rods.
These rods are made with a perfectly conducting material or a dielectric of optical
index v (possibly complex). This grid is illuminated by a transverse electric (TE)
(s) polarized plane wave with wavelength A (in vacuum) and incitdence angle . It
has been shown in [13] that the field in the vicinity of one rod can be expressed by a
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Figure 1. A Lacunary grating with N =7 and N; = 2.

Fourier-Bessel expansion. For instance, for the nth rod, the field at a point P of the
greyed homogeneous region of figure 1 can be written in the form of the sum of a

local incident field Ei(P) and a local diffracted field E4(P):

E(P) = E,(P) + E5(P) (1)
with
+00
EL(P) = Z an gt o(k7s) exp (igfn) (2)
Eq(P) = +2-° bugH) (kry) exp (igfs) (3)

where r, and 8, are the polar coordinates of P in the system of coordinates x,, y,
linked with the nth rod, a,4 and b, , complex coefficients, and k = 2n/\. It must be
emphasized that the local incident field E! (P) is generated not only by the actual
incident field E'(P) given by:

E'(P) = exp (ik(xsina — y cosa)) (4)

but also by the field scattered by the other rods in the direction of the nth rod. At
infinity, the field E9 scattered by the entire set of rods can be written in the form:

EYP) = § b H\" (kr) exp (iqb) (5)

g=-00

where r and 6 are the polar coordinates of P in the general system of coordinates
(x,¥) linked with the first rod. From Graf’s formula [14], the coefficients b, can be
deduced from the b, , by:

by= ) i bupd g—p(k(n — 1)d) (6)

neEN p=—00
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where 4" denotes the set of N, = N — N, remaining rods. Using the S-matrices S,
of the rods defined by:

+o0
Ya, brg = Z Sngpnp (7)

p=—o0

and Graf's formula, then by truncating the set of coefficients Ong and b,, from
g = —0 to +0Q, it has been shown in [13] that the coefficients ayq and b, satisfy a
square linear system of N,(2Q + 1) equations.

From the asymptotic exptression of the Hankel function, the scattered field
given by (5) can be written at infinity in the form:

exp (ikr)

with
1/2 +0Q
&) = (nz—k) exp (— l%) ;Q(ﬁi)qbq exp (iqf) (9)

The intensity at infinity (or bistatic differential cross-section) is defined by:
D(8) = 2nig(8)° (10)

and for lossless cylinders the energy balance criterion can be written in the  form:

o o 2w [ () 1)) o "

The use of this formalism needs the calculation of the S-matrices of the rods, thus
the calculation of the scattering properties of each rod. It is fundamental to notice
that the S-matrix is an intrinsic notion, and is not modified by the existence of the
other rods. Of course, if all the rods are identical, only one S-matrix has to be
determined. When the shape of the rods is circular, the calculation of the S-matrix
1s analytic and this matrix reduces to its diagonal. For rods of arbitrary shapes, a
boundary finite-elements method is used. The reader can find in [13] various tests
of validity of the results.

3. Approximate methods

When the size of the rods is small compared with the wavelength, it has
been shown in [13] that the expressions of the scattered and incident fields ES
and Ein, given by equations (2) and (3), reduce to the isotropic term corresponding
tog==0

EL(P) = anoJo(kr,) (12)

EY(P) = byoH (kr,) (13)

"Thus, according to (7), the scattering matrix reduces to its central coefficient:
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Figure 2.  Isolines of # for dielectric rods of radius a and index ».
bro = Sa0,0aa0 (14)

Note that here, the word ‘isotropic’ is used in order to state that the scattered field
does not depend on the scattering direction.

In order to specify the domain of validity of this isotropic approximation, we
have drawn in figure 2 a graph showing the isolines of

by oH (ka)

F =logy| ——g,—
by HY (ka)

(15)

when the set of rods reduces to only one (N = 1), a being the radius of the rod.
This quantity is the ratio of the fundamental (isotropic term) to the first harmonic
(anisotropic term) of the scattered field given by (3), thus it expresses the degree of
isotropy of the scattered field at the boundary of the rod. Note that
|H(()1)(x)/HE1)(x)| is a monotonic increasing function of x. As a consequence,
represents the smallest value of this ratio in the region x > a outside the rod, where
the scattered field is defined. In other words, # is the most pessimistic estimate of
the isotropy outside the rod. In figure 2, the index v of the rods 1s assumed to be
real. This figure fully confirms the fact that the anisotropy increases as a/X is
increasing. When a/) is smaller than 1072, # becomes linearly dependent on
logio{a/A), and independent of v. The influence of v is restricted to values of a/A
greater than 1072, Roughly speaking, the anisotropy increases with the index of the
rods.

In figure 3, we are dealing with the case where the rods have a conductivity o,
the relative permittivity being given by:
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Figure 3.  Isolines of # for ohmic rods of radius a and conductivity o.

e=1+i— (16)
Egw

w being the pulsatance. The variation of the ordinate from 0 to 9 has been chosen
in order to match with the entire range of ¢/w from ultraviolet to microwave
regions. The first conclusion that emerges is the existence of two asymptotic limits
of the isolines, on both sides of the range of o/w. For small values of the ordinate,
the limit of # is the same as in figure 2, However, it must be noted that the range
of variation of the modulus of the index is much smaller in figure 2 than in figure 3.
As regards the vertical asymptotic behaviour of the isolines for large values of the
conductivity, one must remark that for a given value of the radius, the metallic rod
tends to a perfectly conducting one when o tends to infinity. Using figures 2 and 3,
one can appreciate, in a given problem of scattering by dielectric or metallic rods,
whether a model neglecting the anisotropy of the scattered field 1s acceptable or
not. For instance, if the desired accuracy on the field is equal to 1072, the isotropic

approximation can be used at the left of the isoline # = 2.
Now, let us come back to the problem of the lacunary grating defined in section
2. When the size of the rods is small, it must be noted that the coefficient a, 4 of the
incident field in (12) is nothing but the value of the local incident field at O,. This
field at O, can be calculated 1n another way by remembering that the local incident
field at O, is the sum of the actual incident field E'(O,) and the field scattered by

the other rods:

tng = E'(0,) + Y bmoHy (kd|n — m]) (17)

met
mEn

with, according to (4},

EY(0,) = exp (ik(n — 1)dsina) (18)
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Since the coefficients b,, o tend to zero when the size of the rods decreases, it can be
assumed, as a first approximation, that the sum contained in the right-hand

member of (17) can be neglected. With this approximation, and using (14), the
coefficients b, o are given by:

bno = Spopexp(ik(n — 1)dsina) (19)

The coefficients of the field at infinity given by (6) become:

by=Y_ Suooexp (ik(n — 1)dsina)J, (k(n — 1)d) (20)
ne A

and from (9), the complex amplitude g{f} can be written in the form:
2\'/? 7
g{th = (ﬂ) exp ( - iZ) ";V Sao0exp [i(n — 1)kd(sina — cos §)] (21)
When all the rods are identical, let us write S, 00 = Sgp, and thus:
2\ 1/2 n .
g(8) = (ﬂ) exp ( - 11)80,0 ﬂ;/ exp [i(n — 1)kd(sin v — cos 6)] (22)

If N; =0, the summation in the right-hand member of (20) extends to all the
values of # from 1 to N, thus:

2\ K. AN,
g(®) = (E) exp (— 14)5‘0!0 exp [1 (T)kd(sma —cost)

sin ((IV /2)kd(sin o — cos 6))

23
sin ((kd/2)(sin o — cos §)) (23)
Denoting by g (#) the amplitude scattered at infinity by the first rod:
2\'/? b
=[{Z) s —iZ 24
e @ ()
and defining;:
@ = kd(sina — cos f) (25)
(23) can be written in the form:
N1 sin (Ne/2)
8) = g1 (8 26
2(0) = &( )exp(l( 5 )50) S (/2] (26)

and we deduce the intensity at infinity;
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sin (Ng/2) |*

sin (/2)

D, being the isotropic intensity scattered at infinity by the first rod. The
expression of the intensity has the same shape as that given in the Physical Optics
approximation [15]. It can be noted that the maximum values of D(#) are obtained
when ¢ = 2n! (I integer). This remark allows one to determine the direction of
grating orders,

If some rods are removed, the field scattered at infinity by the lacunary grating
can be obtained by summing the entire sum {n € [1, N]) in (22) then by removing
the exponentials corresponding to the N rods:

£(0) = 1) |exp (i 5 o) S:Iff(fo‘jg)_”;mexp(i(n_lm (28)

n{g A

D(9) = Dy (27)

This first approximate theory does not take into account either the anisotropy of
the field scattered by one rod, or the coupling between the rods. Figures 2 and 3
permit one to evaluate the domain of validity of the isotropic model. On the other
hand, the interaction between rods is a more complicated phenomenon classically
termed ‘multiscattering’. It is possible to improve the previous approximate theory
by including the multiscattering phenomenon to first order. With this aim, we can
include the sum of (17) in equation (14). The new approximation l;,,p will be
deduced by the first approximation b, given by (19) from:

Bup = Suoo |E(0n) + D bmoHY (Rd|n — m]) (29)

ME'."

o
The field at infinity can be obtained from (6), (8), (9) and (10). The interest of this
second approximate theory lies in its simplicity. Even though it is not possible to
express the field at infinity in closed form, this theory can be easily implemented
on a small computer.

4. Validity of the approximate methods

In order to know the domain of validity of the approximate theories, we have
compared their predictions with the results provided by the rigorous theory [13].
The precision of these approximate theories has been compared by using, for each
of them, the following criterion:

[ 19(6) — g:(6)F a8
A=
[ (@) do

(30)

where g,(f) and g,(#) denote the approximate and rigorous values of the scattered
amplitude at infinity, Since obviously the coupling and the anisotropy phenomena
do not depend on N, (at least if N; is small) we have chosen, for simplicity, to
consider the case N, = 0.

Figure 4 shows the value of A versus logy, (a/)), for a grating made with
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Figure 4. Discrepancy factor A versus logg (a/A) for {a) d/A =15, (B) d/A=2, (&)
d/A =125 and (d) d/A = 3. The number of rods is N = 30, the index of the rods
v =25, the incidence a = 0°. Solid line: first approximate method; dotted line:
second approximate method; dashed line: third approximate method.

circular rods of radius a, and for various values of d/)\. The discrepancy factor A
has been drawn for the first, second and third approximate methods, the last one
being derived from the rigorous theory [13] by limiting the Fourier-Bessel
expansion of the field to the central {isotropic)} term. Thus, all these approximate
methods neglect the anisotropy of the field. The first one also neglects the
multiscattering phenomena between rods, the second one takes into account these
multiscattering phenomena at the first order while the third one takes all the
multiscattering phenomena into account. The most striking feature of figure 4 is
the big difference between the curves at the left-hand side (4 {a} and 4 (¢)) and the
curves at the right-hand side (4 (8) and 4 (d)). The discrepancy is much larger in
4(b) and 4 (d) where the ratio d/\ is an integer, except for the third theory. This
result is not surprising. Indeed, since we are at normal incidence, the grating
generates orders in the direction # = 0° and § = 180°, thus the multiscattering
phenomena are strongly enhanced. As a consequence, the first and second theories
become rapidly ineffective as a/A is increased, the second theory being always
much better than the first one. On the other hand, in figures 4 (e} and 4 (¢}, the
second theory provides a discrepancy factor very close to that of the third theory,
and much better than that of the first theory. In figures 4 (a) and 4 (c), the limit of
validity of the first theory (A < 0-05) is close to —1-25 (/A = 0:06) and the limit of
the other theories is close to —1 (a/A = 0-10). On the other hand, in figures 4 (b)
and 4 (d) the respective limits of validity of the first and second theories are close to
~1:6 {(a/A = 0-025) and —1-5 (a/A = 0:032). Most of these results can be predicted
from figure 2, where it appears that instead of the limit of validity of the isotropic
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Figure 5.  Same as figure 4, but for conducting rods of conductivity ¢ = 75002 ! m~! and

A =30mm {i.c. logyy (g/wey) = 3-13).

model {isoline 1-0 for v = 2-5) 1s slightly larger than log;, (A/a) = 1. Thus the third
theory must provide precise results until this limit. On the other hand, the first and
second theories cannot provide a sufficiently precise approximation of the multi-
scattering phenomena inside the range of wvalidity of the isotropic model. In
conclusion, due to its simplicity and its superiority on the first one, the second
theory is a good choice, provided we are far from the conditton of passing-off of
one order (Rayleigh anomaly).

Figure 5 shows the results of the equivalent study for lossy materials. The
conductivity o = 75002 ' m™! is that of new materials in the microwave region
[13], obtained by homogenization process in order to absorb radar radiation. As for
lossless materials, the limit of validity of the isotropic model can be deduced from
our prior study (figure 3). Since log,, (¢/wep) = 3-13, the figure 3 shows that the
limit of the isotropic model (iscline 1-0} is close to log, (a/X) = —1-5, which is
approximately the limit of the third theory in figure 5. When no passing-off occurs
(left side of figure 5), the limit of the second approximate theory is almost identical
while the limit of the first theory 1s much lower. On the other hand, at the passing-
off (night side of figure 5), the limit of the first and second approximate theories are
close to logy, (a/A) = —2:7, which corresponds to a radius of the rod equal to
0-002 A. Thus the conclusion of figure 5 is close to that of figure 4, but with lower
limits of validity of all the approximate thecries.

Figures 4 and 5 have shown the vital importance of d/) on the error, due to
multiscattering effects. Figure 6 shows, for log;, (a/A) = —1-2, the error A versus
d/X, for normal incidence, This figure fully confirms what appeared in figures 4
and 5: the passing-off of grating orders drastically increases the multiscattering.
The simplest approximate theory generates an error always greater than 5%. The
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Figure 6. Same as figure 4, but the abscissa is d/X, and for log, (a/A) = —1-2. The
dashed line given by the third method is very close to the abscissa axis.

second theory provides much better results far from the passing-off. The third
approximate theory provides good accuracy over the entire range of d/).

5. Numerical results
5.1. Prediction coming from the first approximate theory

Thanks to its simplicity, the first approximate theory allows one to conjecture
very simple properties of lacunary gratings, at least in its domain of validity. First,
let us consider the intensity scattered in the directions of the grating orders, where
i = 2ml ({ is an integer). In that case, equation (28) shows that:

g(0) = (N = No)eu(6) (31)

Thus, the result is quite simple: the scattered amplitude at infinity in the directions
of the grating orders is proportional to the number of rods in the lacunary grating,
regardless of the location of the rods. Since, in this approximation, g(f) is
independent of #, all these scattered amplitudes are equal. In figure 7, the rigorous
theory has been used in order to draw, for a lacunary grating, the modulus of the
normalized scattered field gy (6) at infinity, defined by:

5(8)

gnif) = N—N, (32)
According to (31), gy () must identify with the field g1 (f) scattered by a single rod
m the directions of grating orders. When the radius of the rods is small {figure
7(a)), we are in the range of vahdity of the first approximation (see figure 4} and
our predicticn is confirmed by rigorous resuits. On the other hand, for a greater

value of the radius (figure 7 (b)), this prediction fails.
The first approximation allows us to deduce a second property: the rule of
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Figure 7. (a} Solid line: modulus of gn{#} versus 8 for a lacunary grating: N = 15, N, = 4
(the suppressed rods are rods number 2, 5, 10 and 12), a =001, v =23, d = 1-3,
A =1, a = 10°. Dashed line: modulus of the field scattered by a single rod g;{#). (5)
Same as (a), but for a = ¢-1.
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equivalence between two complementary lacunary gratings. Starting from the
finite grating A (N equidistant rods), let us consider two lacunary gratings (B and
C): the lacunary grating B is obtained from A by removing N; rods, and
the complementary lacunary grating C is obtained from A by removing the
N — N, rods of B. Let us denote by ga(f), gp(6) and gc{f) the amplitudes
scattered at infinity by A, B and C. A straightforward consequence of (22) is, for
any value of &:

ge(f) + gc(8) = ga(6) (33)

Figure 8 (a), drawn from the rigorous theory, shows the validity of this conjecture
when the radius of the rods is small. The modulus of the two members of (33) are
very close to each other, in such a way that the curves look identical. In contrast,
for a larger radius of the rods (Figure 8 (b)), the coupling between the rods is not
negligible and the curves differ significantly.

Moreover, if N is large, the field scattered by the fimite grating A is
concentrated at the vicinity of the grating orders; as a consequence, the fields
scattered by the two complementary gratings B and C are opposite outside these
directions, thus the intensities are equal and the gratings are equivalent. Figure 9,
also drawn from the rigorous theory, shows the validity of this prediction for a
grating having a large number of rods.

5.2. Influence of the lacunary defect ratio on the scattered field at infinity
Qur aim in this section is to evaluate the influence of the lacunary defect ratio :

= N,/N {34)

on the scattered amplitude at infinity. For small values of Ny, the behaviour of a
lacunary grating should not differ strongly from that of a perfect finite grating. On
the other hand, when the lacunary defect ratio approaches unity, the lacunary
grating is quite different from the finite grating and one can predict that the
scattered field has lost all information on the period of the initial grating. Thus, the
question that arises is to know what is the transition point, or in other words what
is the threshold value of N;/N up to which the field scattered at infinity by a
lacunary grating still contains information on its initial periodic nature. Con-
versely, another interesting question is to know how to detect efficiently the
lacunary defect when N;/N is small.

In order to answer these questions, it is necessary to specify first what are the
available characteristics of the scattered field at infinity: intensity or both intensity
and phase. In order to evaluate the relative importance of these data, we are led to
define two criteria, expressed in the form:

1/2

[0 1g®)? — |z(8)] o

DI = 2n
/0 g + 12(6)"| d6

(35)
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Figure 9. Solid line: modulus of gg(#) versus # for a large lacunary grating in a region
where no diffraction order exists: N =400, N, = 100, ¢ =0-01, v =25, d =13,
A=1, a=10°. Dashed line: modulus of gc{(f) for the complementary grating
(N, = 300).

1/2

n
f 12(60) — 2(6) a9
DA=|"%

ors (36)
fo 16(6) + 2(6)* a0

where g{#) and g;(8) are respectively the complex amplitudes scattered at infinity
by the perfect and lacunary gratings. In the following, all these functions will be
computed using the code based on the rigorous theory described in section 2. Of
course, the calculation of D4 needs the knowledge of the argument of the field at
infimity while DI can be deduced from intensity measurements. Further, equation
{32) leads us to introduce two supplementary criteria:

1/2
f“ €O | 2@ F
N N — N,
DI_.\T = 021‘{ 2 2 (37)
g0 | 2@ I 4
o N N — N,
" 1/2
[0 a0 Lo
DAy = |18 N _N-N, (38)
2n 2
/ ALB)+ £1(8) oy
e | N N-N,
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These criteria take into account the behaviour of the amplitude of the field in the
diffracted orders. Figure 10 shows the results obtained by starting from a grating
having 30 rods. The first conclusion which arises is the regularity of the behaviour
of the lacunary grating when 7 is increased except at the origin. It is noteworthy
that the four curves look very similar, even when the size of the rods is increased.
However, DI 1s always greater than the other criteria. In other words, if the
intensity scattered by the perfect finite grating is available, it appears that a good
criterion to detect the lacunarity is I}, i.e. a comparison between the intensities.
Furthermore, it appears that the normalization of the field with respect to the
number N — N; of rods is not worthwhile. Bearing in mind (32), this remark can
be surprising for small rods. In fact, this remark shows that the contribution to
DIy and DAy of the field scattered between the direction of the grating orders
plays a vital role,

The main drawback of the criteria used in the previous paragraph lies in the
fact that they require the knowledge of the field scattered at infinity by the perfect
finite grating associated with the lacunary grating. Moreover, figure 10 leads us to
separate the direction of the grating orders from the other ones. Thus we have
defined the incoherence factor £ by:

<f 2O d‘9> et (o)

<[D " o) d9> o)

where Jo; 15 the integral of the intensity outside the central peaks of intensity of
the diffracted orders (the central peak of a given order being defined as the interval
between the two minima of intensity located on both sides of the direction
predicted by the grating formula), Ji, the total integrated intensity, and the
brackets denote the average value on a large number of random realizations of the
lacunary grating. It can be expected that this criterion will provide direct
information on 7. Indeed, if 7 tends to zero, the main part of the intensity goes
to the diffraction order and thus £ should be close to 0. On the other hand, when 7
is increased, the peaks in the diffracted orders tend to disappear and thus £ should
tend to 1. If the behaviour of £ between these two limits is not too sensitive to the
various parameters of the grating, the knowledge of £ will give directly the lacunary
defect factor 7.

Figure 11 shows the incoherence factor versus 7. 'The most interesting features
of the curves lie in the fact that the curves are close to straight lines having the
same ordinate & at the origin (§, = 0-1) and very close slopes. The value of £ can
be easily calculated using the first approximation of section 3. Indeed, if 7 is equal
to 0, equation (27} shows that the intensity tends to 0 outside a small range of
diffracted angles close to the direction of the grating orders. When N tends to
infinity, this range tends to 0. Figure 12 shows the value of D{#)/D given by
equation (27), assuming that sin’(¢/2) can be replaced by ©* /4. It is worth
noting that the summit of the pth peak (p beginning at 0 for the central peak)
is equal to 4N2/(2p + 1)2112, except for the central peak where the maximum is
equal to N2. As a consequence, taking into account the width of the peaks, the
integral of the intensity in the pth peak behaves approximately like N/(2p 4 1)°.
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Ns /N

&)

Figure 10. Influence of the lacunary defect ratio on the mismatch with perfect finite
grating. The number IV of rods is equal to 30 and the other parameters are the same
as in figure 9. {a) Small rods (@ = 0-01). () Large rods (¢ = 0-4). The results are
obtained by taking average values on 10 random realizations of the lacunary grating.
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Figure 11. Influence of the lacunary defect on the incoherence factor £ The solid line
shows the results obtained starting from a grating having 100 rods of index v = 1-5
and radius @ =001, the groove period is d =15, the wavelength A =1, the
incidence a = 0°, the average value being made on 100 random realizations. The
dashed line shows the same result, but starting from a grating having 30 rods, and
the dotted line is for large rods (a = 0:3).

900

I]lIIlJlEIFIILIII]IJIILIILJI!\IJJIIII

800 —
700—
00—
™ 500
®
~ 400—
()
300
200—
100—
0

N £
\[I[IIII1IiWITITTI\|l\IIITIIlllllTTLilL

-2 -1 O 1

'

Figure 12.  Value of D(§)/D; given by equation (27) assuming that sin” (¢/2) can be

replaced by ¢ /4(N = 30).
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In order to calculate the limits of the intensities in the peaks as N — co, we

define:
/2”(”“)/ sin? sin” (Ny/2) (40)
T] =

P S sin (0/2)
It is important to notice that 7, is equal to the area of the pth peak except for p = 0,

7o representing half of the area of the central peak. Remarking that when N — oo,
dfl/dy tends to a constant and sin (/2) & ¢/2, 1, becomes:

dg [AreV/N gin? (Np/2
Wp—4dtp/ ~—2—/)dw (41)
2rp/N Y

and using the new variable u = N/2, (41) yields:

df [+ fsinw\?
= 2N g (%—”) du (42)
np

Finally, if we limit ourselves to the intensity around a given diffraction order,

§o = (43)

From a mathematical point of view, the approximation made to deduce (41) from
(40} requires p to remain finite as N tends to infinity. However (43) is quite correct
since the sum converges very rapidly {in 1/p?). For example, a straightforward
numerical calculation shows that 7/ = 0-0521, Mo/mo = 0-0010 and
7oo/7o = 107°. Since the value of £ given by (43) does not depend on the diffracted
order, it can be deduced that the same formula holds for the actual value of £
defined by (39), This theoretical value is:

£ = 0-097 (44)

Figure 11 shows the validity of this prediction. It is very important to note that
this value of the ordinate seems independent of the radius of the rods, even though
our prediction was based on an approximation valid for small rods only. Figure 13
gives the corresponding curves for lossy rods. Obviously the conclusion remains
the same.

In conclusion, the incoherence factor £ is very interesting since it can provide
for an experimenter a direct estimation of the lacunary defect 7. Of course, a
thorough numerical investigation would be necessary to estimate the variation of
the slope of £(7) around the origin; however the present calculation can be
considered as very promising,

Finally, in order to conclude this section, an answer will be given to the
question asked at the beginning of the section: what is the threshold value of N,/N
up to which the field scattered at infinity by a lacunary grating still contains
information on its initial periodic nature? Figure 14 shows the surprising
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Figure 14, Average value of intensity on 10 random realizations of a lacunary grating
with N =15, N, =13, a=0-1A, d = 16}, v = 2-5 and a = 10°, The arrows give the
directions of the grating orders.

conclusion of our investigation. It represents the average value of intensity on 10
random realizations of a lacunary grating with & = 15 and N, = 13. The presence
of peaks in the direction of grating orders is all the more surprising since the
lacunary grating contains two rods only! The explanation of this phenomenon
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seems to be simple: even though the grating contains two rods only, these rods
must be located at quantified places which ensures a coherence in the direction of
grating orders. The average process favours the coherent directions and thus
exhibits the peaks. However, it should be borne in mind that multiscattering
effects can completely modify the phenomenon: when only two rods remain in the
lacunary grating, the field at infinity can take maximum values in directions
different from those of the grating orders. Figure 14 shows that, due to the
average process, the prediction of the heuristic reasoning holds.

6. Conclusion

From a rigorous theory of scattering from lacunary gratings, we have been able
to estimate the limits of validity of three approximate theories neglecting the
anisotropy of the field scattered by each rod. Within the range of validity of the
most simple approximate theories, the time-consuming calculations on work-
stations using the rigorous theory can be replaced by simple approximate formulae
using a pocket calculator. The most simple approximate theory allowed us to
predict some simple properties of lacunary gratings having small rods. The first
one is that, in the directions of the grating orders, the complex amplitude of the
scattered field is proportional to the total number of remaining rods, whatever
their locations. The second is the equality of the intensities scattered outside the
grating orders by two complementary lacunary gratings.

Finally, our numerical results have permitted us to investigate the transition
between periodic gratings and lacunary gratings with large lacunary defect ratios.
From these calculations, it emerges that a good means for characterizing the
lacunary defect ratio is to measure the incoherence factor. Because of the
importance of gratings in reduction of Radar Cross Section, an actual measure-
ment of the lacunary defect ratio from experimental measurements in the
microwave region would be very interesting.
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