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Abstract:

We describe methods of investigation in order to study the behavior of photonic crystals. Our approach establishes a link between the
dispersion relation of the Bloch modes for an infinite crystal (which describes the intrinsic properties of the photonic crystal in the absence of
an incident field) and the diffraction problem of a grating (finite photonic crystal) illuminated by an incident field. We point out the
relationship between the translation operator of the first problem, and the transfer matrix of the second. The eigenvalues of the transfer
matrix contain information about the dispersion relation. This approach enables us to answer questions such as: when does ultrarefraction
occur? Can the photonic crystal simulate a homogeneous and isotropic material with low effective index? This approach also enables us to
determine suitable parameters to obtain ultrarefractive or negative refraction properties and to design optical devices such as highly
dispersive microprisms and ultrarefractive microlenses. Rigorous computations add a quantitative aspect, and demonstrate the relevance of
our approach.

1.   INTRODUCTION

Photonic crystals have been the subject of considerable interest in
the last decade. They have many potential technological
applications such as the development of efficient semiconductor
light emitters, filters, substrates for microwave antennas, lossless
mirrors. Consequently, photonic crystals have generated
intensive experimental and theoretical research.
Experimental studies of ultra refraction, negative refraction,
highly dispersive properties of structures based on photonic
crystals have been reported recently 1,2. To our knowledge, the
most thorough study has been performed on corrugated
waveguides 3. However, the electromagnetic foundations for
explaining these phenomena have not been clarified. Our
contribution clarifies these foundations, and allows us to
demonstrate specific properties of photonic crystals.
In this paper, we are interested in finite size photonic crystals
illuminated by an incident field. A priori, this problem is
different from the study of Bloch modes propagating in an
infinite crystal. Bloch theory only considers propagative modes,
whereas in a finite crystal, there are also evanescent modes. It is
well known in grating theory that evanescent modes play an
important role and cannot be neglected in a quantitative analysis.
In section 2, we recall some well-known results for Bloch waves
in infinite crystals.
Section 3 is concerned with an actual problem of diffraction by
finite size crystals. With the help of an elementary transfer
matrix, we point out the connections between the incident field,
the eigensolutions of this matrix, and the Bloch modes of the
associated infinite structure.
In section 4, we show how these tools can be used to understand
and anticipate the qualitative behavior of limited crystals, and we
apply them to the study of anomalous refraction properties of
photonic crystals. We give examples of ultrarefraction and
negative refraction.
Sections 5 and 6 are devoted to devices using anomalous
refraction properties: the qualitative rules given in the preceding
section enable us to determine the parameters that permit the
design of ultrarefractive microlenses and highly dispersive
microprisms. Rigorous computations add a quantitative aspect,
and demonstrate the relevance of our approach.
There are circumstances where evanescent modes govern the
behavior of the crystal. The simplest example is obtained inside a
bandgap, and we show in section 7 how field decay is related to
the eigenvalues of the elementary transfer matrix.

Throughout the paper, we use a rectangular coordinate
system (O,x,y,z). The unit vectors of the axes are ex , ey  and ez.

We consider harmonic fields represented using a time
dependence exp(-iωt), with ω π λ= =2 0c c k/ ,  c being the

celerity of light in vacuum and λ the wavelength. All the numeric
values of the linear measurements given in the examples are in
arbitrary units.

For the sake of simplicity, we consider in this paper two-
dimensional photonic crystals made with lossless materials
(dielectric or perfectly conducting). However, the generalization
to three-dimensional structures is straightforward. The reason for
restricting ourselves to 2D cases is that vast computational
means, not currently available, would be needed to rigorously
solve realistic 3D problems. The 2D photonic crystal is invariant
by translation along the z-axis. We suppose that the total
electromagnetic field is z-independent. Consequently, the
problem reduces to two independent scalar problems that we call
E// (resp. H//) when the electric (resp. magnetic) field is parallel
to the z-axis. We denote by u(x,y) the relevant component of the
total field (Ez  or Hz  depending on the polarization case).

2.   BLOCH SOLUTIONS IN AN INFINITE CRYSTAL

Solutions of the Maxwell equations in an infinite periodic
structure have been extensively studied 4-9. The permittivity ε of
the 2D problem is invariant under two fundamental and
independent translations d and ∆∆:

for all integers p and q,   ε ε( ) ( )r d r+ + =p q∆∆  . (1)

The theoretical background is based on Bloch theorem: every
solution is a linear combination of Bloch eigenmodes. The
relevant field component of each Bloch eigenmode is such that:

u vk r k r r( ) exp(i ) ( )= ⋅  , (2)

where v( )r  is a periodic function:
for all integers p and q,   v p q v( ) ( )r d r+ + =∆∆  . (3)

In the usual sense of the Bloch theorem, the Bloch wave vector k
is real, since one is concerned with bounded solutions. This
assumption also holds in the continuation of this section.

There are several methods to obtain the solutions k( )ω  4-9.
From these solutions, the dispersion relationships can be derived.
In the classical presentation, the solutions are presented on a
bidimensional diagram where the abscissa represents the edge of
the first reduced Brillouin zone. We give in figure 1 an example
of this diagram in the case of a photonic crystal made of circular
rods of radius ρ = 0.475, with optical index ν = 3, lying in
vacuum. The rods are arranged on a square lattice with period
d = 1.27. These parameters are those of the previous
experimental and theoretical works depicted in 10-12. Apart from
section 7, all the photonic crystals used in this paper keep these
parameters. Figure 1 has been computed using a plane wave
expansion method 5. It clearly shows the presence of several
gaps. Many of the further examples of this paper will concern the
upper limit of the second gap (ordered in increasing values of ω).
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Figure 1: Dispersion diagram for E// polarization in a 2D crystal
with square lattice. The abscissa represents the Bloch wave

vector on the edge of the first reduced Brillouin zone shown in
the small insert: Γ, X and M stand for the points with coordinates

(0,0), (π /d,0) and (π /d,π /d) in the ( , )k kx y  plane.

In order to study the transport of energy inside the crystal,
let us recall a fundamental result linking the dispersion relation
and the energy propagation 13. For a given Bloch wave, we
denote by Ve  the average velocity of the energy flow (the
average is taken upon a lattice cell):

V
r

r
e

cell

cell

= II
II

(Poynting vector) d

(energy density) d
 , (4)

and by Vg  the group velocity of the same Bloch wave, deduced

from the dispersion relation ω( )k  by:

V e ekg
x

x
y

yk k
= = ∂ω

∂
+ ∂ω

∂
grad ( )ω  . (5)

The result is that
V Ve g=  . (6)

All these results are valid for structures that fill the entire
space. In the next section, we show the relationship between the
external incident field of a physical problem and these Bloch
waves.

3.   T-MATRIX OF A PHOTONIC CRYSTAL SLICE

In this section, we make use of the T-matrix that represents the
translation operator between the top and the bottom sides of a
grating (a photonic crystal slice). Its eigensolutions are a valuable
tool in order to understand the crystal behavior. This point of
view has already been suggested in the computation of band
structures 14,15. We show that they also give information on
transmission properties and on the coupling between the incident
field and the Bloch waves.

3.1. The crystal as a grating problem; pseudo-periodicity of
the fields

The crystal is modeled as a stack of N grids (Fig. 2). Each grid is
equivalent to a grating. As well known in grating theory, the T-
matrix that relates the field above and below a grating suffers
from the exponential growth of its elements. Consequently, the
use of the T-matrix leads to numerical problems, at least when
the structure is composed of several grids. Many other
propagation algorithms are more suitable from this point of
view 16-20. As regards our objectives, we will make use of the T-

matrix related to only one grid, in such a way that the numerical
problems do not arise. On the other hand, the T-matrix contains
all the information on the propagation of the field through the
structure, and makes a simple connection between gratings
problems (N is a finite number) and Bloch waves in infinite
crystals (N infinite).
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Figure 2: A crystal with finite extent with respect to the
y-direction, and made of N gratings (N = 3 on this example).

The structure is z-independent, and infinite along the x-direction.
The periodicity along x is d. The distance between two grids is

∆ y . The x-shift between two grids is ∆ x . Thus, the two

elementary translations are d e= d x  and ∆∆ = −∆ ∆x x y ye e .

Each grating is characterized by x-periodic electromagnetic
parameters, which are not necessarily piecewise constant.

In a general problem, this grating is surrounded by an
electromagnetic field with no particular properties (no radiation
wave condition, no plane wave expansion). For instance, we can
think of a problem where this grating is a slice of a thicker
photonic crystal, illuminated by a limited beam. The relevant
field component can be written as a Fourier integral:

u x y u y x( , )
�
( , ) exp(i ) d=

−∞

+∞
I α α α  . (7)

By splitting the integration interval ] , [− ∞ +∞  in subintervals
[ ,( ) ]n nd d

2 21π π+ , a simple change of variable leads to the other

expression:

u x y u x y
d

( , ) ( , ) d
/

= I α
π

α
0

2
 , (8)

where the integrand

u x y u m y m x
m

d dα
π πα α( , )

�
( , ) exp i( )= + +

=−∞

−∞

∑ 2 2
� �

(9)

is a x-pseudo-periodic function 21 with pseudo-periodicity
coefficient α, i.e.:

u x d y d u x yα αα( , ) exp(i ) ( , )+ =  . (10)

Consequently, the study of the general field u(x,y) reduces to the
study of its pseudo-periodic components u x yα ( , )  for all α in the
first Brillouin zone [ , / ]0 2π d  of the x-periodic problem.

3.2. Definition of the T-matrix

d ∆∆y
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y = -∆y

Figure 3: A single grating extracted from figure 2.

Let us isolate a grating from the complete stack (Fig. 3). The
medium above and below this grating is homogeneous and can be
arbitrarily chosen. Without loss of generality, we assume that this
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medium is the vacuum. As well known in grating theory, the
pseudo-periodic function u x yα ( , ) is written as:

for y > 0:

u x y A y A y xm m m m m
m

α β β α( , ) exp( i ) exp( i ) exp(i )= − + +− +

=−∞

+∞

∑  ,(11)

for y < -∆ y :

u x y B y B y

x

m m y m m y
m

m x

α β β

α

( , ) exp( i ( )) exp( i ( ))

exp(i ( ))

= − + + + +

× −

− +

=−∞

+∞

∑ ∆ ∆

∆
 (12)

where

α α π
m m

d
= + 2

 , (13)

and βm  is defined by:

α β ω
m m

c
2 2

2

2+ = , with arg( ) , /β πm ∈ 0 2
� �

 . (14)

Denoting by A− , A+ , B−  and B+  the infinite column vectors
with Am

− , Am
+ , Bm

−  and Bm
+  components, the T-matrix is the

operator which relates the field below the grating to the field
above:

B

B
T

A

A

T T

T T
A

A

−

+

−

+

−

+

�
���

�
� �� =

�
���

�
� �� =

�
��

�
� �

�
���

�
� ��

11 12

21 22
 . (15)

The T-matrix is obtained using any good numerical technique
able to solve the problem of figure 3, illuminated by an
appropriate plane wave (which is associated to the required value
of α  in [ , / ]0 2π d . In our implementation, we use a numerical
code based on a rigorous integral theory 22. This code is one of
the basic tools in our laboratory for the study of gratings and non-
doped photonic crystals. It is the latest development of the
original thesis work of D. Maystre 23, and has been thoroughly
checked by classic tests and comparisons with experimental data.
With the help of this code, we compute first the S-matrix defined
by

A

B

S S

S S
A

B

+

−

−

+

�
���

�
� �� =

�
��

�
� �

�
���

�
� ��

11 12

21 22
 . (16)

From the computed S-matrix (necessaril y of finite size), we
derive a finite size approximate of the T-matrix by the classical
relations (which can be easil y obtained from (15) and (16)):

T S S S S

T S S

T S S

T S

11 21 22 12
1

11

12 22 12
1

21 12
1

11

22 12
1

= −
=
= −
=

�
	





�




−

−

−

−

 . (17)

The resulting finite size transfer matrix will be denoted by TM , M
being defined in such a way that the summations in (11) and (12)
go from –M  to +M.

3.3. Eigenvalues of the T-matrix

The T-matrix represents the translation operator between the top
and the bottom sides of the grating. Let us consider one
eigenvalue µ of the transfer matrix TM , and let us call Aµ  the

associated eigenvector. The components of this eigenvector can
be regarded as A mµ,

−  and A mµ,
+  coeff icients of a field u x yα µ, ( , )

defined by (11) in the upper region (y > 0):

A
A

Aµ
µ

µ
=

�
���

�
� ��

−

+  . (18)

Note that the field u x yα µ, ( , )  associated to the eigenvector Aµ  is

defined everywhere, and in particular in the grating region
(− ≤ ≤∆ y y 0). The coeff icients B mµ,

−  and B mµ,
+  of this field are

defined by (12) below the grating (y < -∆ y ) and verify:

B
B

B
T

A

A
T A A

A

AM Mµ
µ

µ

µ

µ
µ µ

µ

µ
µ µ=

�
���

�
� ��

=

�
���

�
� ��

= = =

�
���

�
� ��

−

+

−

+

−

+  . (19)

From (11) and (12), it emerges that the values of the field uα µ,  at

the points with coordinates (x,0) and ( , )x yx y+ −∆ ∆  only differ

by a multipli cative coeff icient µ.

Let us suppose that |µ| = 1. Then the multiplicative coeff icient is
a pure phase shift. It means that the restriction of uα µ,  in the sli ce

(− ≤ ≤∆ y y 0) can also be considered as the restriction in the

same region of the infinite 2D periodic problem of section 2. In
other words, this eigenvector represents in the slice a Bloch
solution uk r( ). The fields uα µ,  and uk  respectively verify Eqs.

(10) and (2):
u d uα µ α µα, ,( ) exp(i ) ( )r d r+ =  , (20)

u k d uxk kr d r( ) exp(i ) ( )+ =  , (21)

which gives the x-component of the Bloch vector:
kx = α  . (22)

Applying the second elementary translation ∆∆:
u uα µ α µµ, ,( ) exp(i arg( )) ( )r r+ =∆∆  , (23)

u k k ux x y yk kr r( ) exp(i i ) ( )+ = −∆∆ ∆ ∆  , (24)

give the y-component of the Bloch vector:

k
k

y
x x

y

= −∆
∆

arg( )µ
 . (25)

Equations (22) and (25) point out the link between the grating
problem and the Bloch solutions of the infinite structure.
Moreover, equation (25) paves the way for obtaining the
dispersion curves of the Bloch problem from the eigenvalues of
the T-matrix.

Let us suppose that |µ| ≠ 1. The restriction to the sli ce
(− ≤ ≤∆ y y 0) of uα µ,  associated to the eigenvector can not be a

Bloch solution with real vector k.

Let us now consider the spectrum of the transfer matrix TM . We
can distinguish the two following situations.

First, if there is no eigenvalue with modulus equal to 1, it could
appear evident that we are in a "gap" situation: if the crystal of
figure 2 is illuminated by an incident plane wave (with a wave
vector projection on the x-axis equal to α), the transmitted field
through the N gratings tends exponentiall y towards zero as N
increases. This exponential decay is directly related to the
modulus of the eigenvalue whose modulus is the closest to 1. An
example will be given in section 7. In order to prove this
assumption, one should consider the translation operator T
(infinite matrix). Indeed, the truncated matrix TM  has lost some
fundamental properties of T (such as those linked to the energy
conservation), and therefore it is diff icult to quantify the

pertinence of TM
N� 

 when N tends to infinity. This problem

involves subtle mathematics and the interested reader wil l find
mathematical background in a recent paper 24.

Second, if there is at least one eigenvalue with modulus equal to
1, there is no gap in the sense of the 2D crystal that fil ls the entire
space. In other words, there is at least one Bloch solution that can
propagate in the structure. If the crystal of figure 2 is illuminated
by a plane wave, the incident field can excite the Bloch solution.
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But the coupling between the incident field and the Bloch
solution also depends on numerous parameters, and in particular
on the respective symmetries of these two fields 25-28.

In any case, the field in the grating can never be reduced to a
combination of Bloch waves. The methods that rely upon this
assumption can probably give accurate results in some
circumstances, but their results should be carefully checked with
the help of rigorous methods. The same applies to conclusions
directly obtained from dispersion diagrams of Bloch waves.
However, as will be shown in the next sections of the paper,
these dispersion diagrams are very helpful in the prediction and
the understanding of the complex phenomena that occur in
photonic crystal studies.

4.   USEFULNESS OF THESE TOOLS

4.1. Three-dimensional dispersion diagram

From now on, we suppose that the photonic crystal has a square
lattice. Therefore, the elementary translations are such that
∆ x = 0 and ∆ y d= . All the examples are given in the E//

polarization case.
Even though most of the information about propagating

waves (i.e. |µ| = 1) can be deduced from bidimensional dispersion
diagrams as that shown in figure 1, we found that a 3D
representation of the same diagram was more convenient for our
purpose. Figure 4 shows the same dispersion diagram as figure 1,
but the Bloch wave vector covers the whole Brillouin zone (in
fact the square region where kx  and ky  belong to [0,π/d] )

instead of the edge of the first reduced Brill ouin zone. In this
figure, each band is represented by a sheet. This diagram reveals
the complexity of the dispersion relation of the photonic band
structure, and especiall y how the three higher sheets of this figure
overlap at the upper limit of the second gap.
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Figure 4: Three-dimensional dispersion diagram. The horizontal
plane gives the Bloch wave vector k. The vertical axis gives the

normalized frequency ω π λd c d/ ( ) /2 = . The bottom sides of the
sheets are represented in darker gray. The triangle

corresponding to the first reduced Brillouin zone has been drawn
in the (kx , ky ) plane. The parameters are the same as in figure 1.

The diagram has been computed using the plane wave expansion
method.

Since several interesting properties of the photonic crystals
are obtained at the limit of the gap, let us plot (Fig. 5) an enlarged
view of this region.
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Figure 5: Enlarged view of the 3D-dispersion diagram near the
upper edge of the second gap. The intersection between the

sheets and the horizontal plane corresponding to the wavelength
λ = 2.545 is the curve that limits the two differently colored

regions of the sheets. Due to the slow convergence of the plane
wave expansion method, the levels of the sheets are not perfectly

accurate, and this diagram only gives qualitative information.

The problems we are concerned with are harmonic ones.
Hence we are interested in the intersection of the sheets and the
horizontal plane associated to the actual value of ω. This
intersection is pointed out (for an arbitrary chosen ω) by the limit
between the two differently colored regions of the sheets. The
resulting curves are reported on Fig. 6. Note that the wavelength
λ = 2.545 in Figs. 5 and 6 is chosen in order to match the
previous work of reference 12.
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Figure 6: Constant-frequency dispersion diagram and energy
flow direction for some particular values of kx . The dotted

curves are the intersection of the sheets (Fig. 5) and the
horizontal plane corresponding to λ=2.545. There is no
propagating solution for 0 6 12. k .x< < . This quantitative

diagram is obtained using the T-matrix.
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4.2. Constant-frequency dispersion diagram

It is worth noting that the plane wave expansion method is well
suited to obtain the Bloch solutions for a given value of the Bloch
wave vector k, and is adapted to the plot of dispersions diagrams
such as that presented in figure 1. But it suffers from a poor
convergence rate versus the number of plane waves. In our
problem, and since we are at the edge of the gap, a very small
error in the dispersion diagram can drastically change the
conclusions.

On the other hand, the use of the T-matrix directly gives the
solutions ky  as a function of kx  (Eqs. (22) and (25)) for a given

value of the wavelength λ. Moreover, this method gives a very
good accuracy and can deal with any grating structure, including
dispersive and metallic materials.

That is the reason why figure 6 has been computed by the
search of the eigenvalues (with |µ| = 1) of the TM  matrix. In this
case, M = 7 is suff icient to ensure a good accuracy. The graph
shows that in this particular case, for each fixed value of kx  in [-

π/d,π/d], there are zero or two opposite values of ky  in [-π/d,π/d].

Remark that due to the symmetry of this crystal, if ky  is solution,

−ky  is also a solution.

Let us now focus on the propagation of the energy for a
given Bloch wave. Equations (5) and (6) tell us that the averaged
velocity of the energy flow is immediately given by the normal to
the constant-frequency dispersion diagram (Fig. 6). Moreover,
the combined use of (5) and figure 5 allows us to determine the
orientation of this vector, which points towards the increasing
values of ω on the sheet of Fig. 5.

4.3. Application to a finite crystal

Let us now consider a finite crystal with N grating layers,
illuminated by an incident field. We suppose in a first step that
this incident field is a plane wave with wavevector of modulus k i

and incidence θ with respect to the y-axis. From grating theory, it
is well known that the pseudo-periodicity coeff icient α (Eq. (10))
is given by:

α θ= k i sin  . (26)

In order to make a prediction about the field behavior in the
illuminated crystal, we only consider the propagating
eigenvectors (with |µ| = 1) of the TM  matrix which, from section
3.3, are associated with Bloch solutions of the infinite crystal.
One should be aware of the empirical aspect of this hypothesis
which neglects the evanescent solutions ( |µ| ≠ 1). One knows
that similar assumptions in grating theory can lead to erroneous
results. Nevertheless, we wil l see that in this way we obtain an
interesting description of the energy travel in the crystal, which
proves to be in good agreement with our rigorous numerical
checks. From equation (22), we know that the pseudo-periodicity
coeff icient α is nothing more than the x-component of the Bloch
wave vector, which gives the link between the incident plane
wave and the Bloch solutions.

In a second step, let us suppose that the incident field is a
limited beam expressed as a plane wave packet:

u x y A x yi , exp i i ( ) d
� � � � � �

= −
−∞

+∞

I α α β α α , (27)

with α θ= k i sin , β α2 2 2= −k i , and with a gaussian ampli tude:

A
W W

α
π

α α� �
= −

−
�
��

�
� 	

2 4
0

2 2

exp
( )

 . (28)

The mean incidence θ0 of the beam is such that:

α θ0 0= k i sin  . (29)

It can be noticed that the parameter W appearing in (28) is
directly linked to the incident beam width.

There is no major difference with the case of an incident plane
wave, and each component A x y( ) exp i i ( )α α β α−

� �
 of the plane

wave packet has an average energy flow direction given by the
remark of section 4.2, i.e. the normal to the constant-frequency
dispersion diagram at the points given by kx = α .

4.4. Anomalous beam shift and ultrarefractive behavior

Coming back to figure 6, we can profit from the quasi-square
shape of the central curve: we illuminate the crystal by a limited
beam with α0 0 275= . . This value corresponds in vacuum to a

mean incidence θ0 6= °.4  for λ = 2.545, which are the
parameters already used in Ref. 12. For a value W = 10 of the
beam width, the amplitude A( )α  take significant values (namely
A A( ) ( ) /α α> 0 5) only for 0 02 0 53. .< <α . All the directions
normal to the constant-frequency dispersion diagram are close to
the ± °45  directions, depending whether the energy flows
upwards or downwards.
These parameters are those used for the computation of figure 7.
This total field map has been computed with the help of a modal
method based on scattering matrices, the fields being expressed
as Fourier Bessel series 29,27. This method rigorously solves the
problem of a finite set of parallel rods. From this point of view,
the structure is not a grating as considered in previous sections
(infinite extent along the x-axis). Anyway, in our case where the
incident field is a limited beam, there is no noticeable difference
between the fields diffracted by the finite set of rods and by the
grating, at least when (as can be seen on Fig. 7) the field vanishes
at both ends of the crystal. A comparison between the x-truncated
crystal and the grating is given in Ref. 12. This modal method has
been chosen because it enables us to deal also with structures
which can not be modeled by gratings: microlenses (section 5) or
microprisms (section 6).
Figure 7 shows that our expectations concerning the average
energy flow inside the crystal are confirmed by the rigorous
computation. Roughly, the problem looks like a li ght ray going
through a slice of material with optical index less than 1.
Following the Snell -Descartes law, the transmitted beam is
abnormally shifted with respect to the axis of the incident beam.
Both upward and downward directions can be interpreted by the
reflection of the beam. This example has already been studied in
Ref. 12. But the approach is here completely different, and
probably more intuitive.
It is worth noting that in this particular case, and since the central
curve of figure 6 is not an ellipse (and a fortiori not a circle) we
can not consider the photonic crystal as a homogeneous material
with low effective permittivity tensor (and a fortiori with low
effective optical index). Nevertheless, this example clearly
exhibits an ultrarefractive behavior.
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Figure 7: Map of the total field modulus for a crystal made of
69 7×  rods lying in vacuum and illuminated by an E// polarized
gaussian beam with θ0 6= °.4 . The crystal parameters are the
same as in Fig. 1. Above the crystal the beam reflected by the

crystal interferes with the incident beam and generates a system
of stationary waves.  Straight lines show the locus of the

maximum incident (black), transmitted and reflected (white)
fields.

4.5. Negative refraction

Figure 6 shows that for large positive values of kx , the average
energy propagates towards the negative values of x. This
phenomenon can be checked by increasing the mean incidence to
a value θ0 40= ° . The corresponding field map is shown in
Fig. 8. A ray interpretation for this particular incidence will lead
to a negative refraction. Note that in order to consider the
material as a homogeneous one with negative optical index, the
constant-frequency dispersion diagram should look like a circle
centered on the Γ point (k kx y= = 0) on a sheet that reaches its

maximum at Γ. A similar situation in a 3D crystal has been
recently reported by Kosaka et al. 2.
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Figure 8: Negative refraction. Same parameters as Fig. 7, except
θ0 40= °

5.   APPLICATION TO ULTRAREFRACTIVE
MICROLENSES

Ultrarefractive properties of photonic crystals have been
suggested previously 30. We show here that the formalism
exposed in the previous sections is well suited to determine the
parameters that enable to engineer devices based on this
phenomenon. The aim is to design an artificial material whose
effective index is less than 1, and if possible close to zero. It
means that the constant-frequency dispersion diagram should
follow a circle

k k k nx y eff
2 2

0
2 2

+ =  , (30)

i.e. a small circle centered on the origin in the (k kx y, ) plane. In

order to obtain this property, let us decrease the frequency
associated to the horizontal intersection plane of Fig. 5. Figure 9
shows the constant-frequency dispersion diagram for two
wavelengths close to the k kx y= = 0  limit of the sheet of Fig. 5.

The curve for λ1 2 56= .  is very close to a circle, and the effective
index given by (30) is n1 0 086= . .

Note that even if the crystal behaves as a homogeneous
material, the physical situation is very different from that
generally studied in homogenization works where one considers
quasi-static limits 31,32.

0.0 0.1 0.2 0.3 0.4
0.0

0.1

0.2

0.3

0.4

 

 

λ
2 = 2.55

λ
1 = 2.56

k
y

k
x

Figure 9: Same as Fig. 6 for two different wavelengths. Only the
central region is presented.

Since the index contrast with other materials is very large, new
optical elements can be imagined. For instance, let us design a
microlens composed of 295 rods of the same photonic crystal.
The width of this lens is equal to 64, i.e. 25λ, and the radius of
curvature of the concave face is R = 50. When illuminated by a
gaussian beam of width W = 40 in normal incidence, the
transmitted field focuses at a point situated at f = 53 from the
concave face (Fig. 10). Note that the same lens built in classical
material (optical index greater than 1) is divergent. On the sides
of Fig. 10, the field is principally due to the diffraction by the
edges of the lens.
A straight application of optical geometric results gives the focal
length:

f
n

R=
−

=1
1

54 7
1

.  , (31)

which agrees with the actual value f = 53, and proves the very
good similarity between the crystal and an isotropic
homogeneous material.
One should be aware of the fact that if the constant-frequency
dispersion diagram does not look like a circle, there is no clear
focusing of the light.
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Figure 10: The microlens is illuminated in normal incidence from
the top by a gaussian beam in E// polarization.

6.   APPLICATION TO HIGHLY DISPERSIVE
MICROPRISMS

Photonic crystal prisms have been experimentall y studied and
proposed as highly dispersive components 1.
As a first step, let us work in the range of wavelengths where the
crystal behaves as a quasi-homogeneous material. We chose the
wavelength λ1 2 56= .  for which the central curve of the constant-
frequency dispersion diagram looks like a circle (Fig. 9). The
effective optical index obtained from (30) is n1 0 086= . . We
consider a microprism made of 465 rods disposed in an isosceles
right-angled triangle. The side of this triangle is equal to 37, i.e.
15λ. It is illuminated by a gaussian beam of width W = 10 in
normal incidence. Figure 11 shows that the beam is going
through the hypotenuse with quasi-normal direction. In order to
precise this direction, we plot (Fig. 12) the scattered intensity at
infinity versus the diffraction angle θ (conventional polar angle
with horizontal axis as origin). A straight appli cation of the Snell -
Descartes law leads to the following angle θ1 at the wavelength
λ1:

n1 1 145 45 415sin sin( ) .°= °− ⇒ = °θ θ  . (32)

This value is in perfect agreement with Fig. 12.
We can remark that the high index contrast implies that the
reflection is important at each interface. It could probably be
attenuated by the use of some antireflection structure.
In a second step, let us evaluate the dispersion. Changing the
wavelength to λ2 255= .  shifts the maximum diffraction angle
(Fig. 12) by about 3°. By the way, since this wavelength is farther
from the gap, the transmitted intensity is greater. Figure 9 shows
that for this wavelength, the constant-frequency dispersion
diagram is not a circle, but it has no importance on the
phenomenon. Indeed, and since this problem only involves
"plane boundaries" between the crystal and the external vacuum,
the crystal does not necessaril y need to behave as a homogeneous
material.
It is easy to verify that the dispersion dθ/dλ is much greater with
this microprism than with any other classical dispersive device
(grating, silica prism). Such microprisms could find interesting
applications in the domain of fiber optical communications, and
in particular in wavelength multiplexing/demultiplexing.
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Figure 11: The microprism is illuminated from the left by a
gaussian beam with λ1 2 56= . .
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Figure 12: Scattered intensity at infinity for λ1 2 56= .  and
λ2 255= . .

7.   NON PROPAGATIVE SOLUTIONS AND T-MATRIX
FORMALISM

In the previous examples, our interpretation was based on Bloch
solutions, and the evanescent solutions were neglected. We have
shown that this point of view leads to many interesting
predictions in the transparency bands. When there is no Bloch
solution (gap), one can extract from the eigenvalues of the T-
matrix some pertinent information.
The global behavior of the field inside the crystal is governed by
the eigenvectors of the T-matrix. We consider a semi-infinite
crystal, i.e. N tends to infinity in Fig. 2, and the crystal fills the
space for y less than an arbitrary value.
Inside the gap, there is no eigenvalue with modulus equal to 1.
All the eigenvectors are evanescent or anti-evanescent with
respect to y. Since the field should stay bounded when y tends
towards −∞ , only the eigenvectors associated with the
eigenvalues with modulus less than 1 are suitable. From all of
them, the one whose eigenvalue µ1 is the closest to 1 has the
slowest decay. From this remark, for a suff icient number N of
layers, we can expect that the energy transmission behaves as

µ1
2N

 (the energy is linked to the square of the eigenvector).

We illustrate this property in the case of a photonic crystal made
of N layers of perfectly conducting rods. The radius of the rods is
equal to 0.01. The square cell of the crystal has a spacing d = 1,
and the crystal is illuminated in normal incidence by a plane
wave in E// polarization, at a wavelength λ = 10.2. These data are
those of a previous paper 33. From the T-matrix of a single layer,
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we obtain µ1 0 288= . . Figure 13 compares the decimal

logarithm of the transmission (obtained with a rigorous grating
code) through a stack of N grating layers and the decimal

logarithm of µ1
2N

. The slopes are identical; thus the exponential

decay is clearly governed by this eigenvalue. This spectacular
agreement is due to the fact that in this case the moduli of the
other eigenvalues are considerably smaller than µ1 . Otherwise,

one should probably consider a greater number of layers in order
to see the predominance of µ1.
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Figure 13: Exponential decay of the transmission for a photonic
crystal made of N layers of perfectly conducting rods.

Conclusion

We have developed an eff icient approach in order to predict
some of the properties specific to photonic crystals. The
theoretical basis has been exposed. Dispersion diagrams of Bloch
modes are useful in this context. However, the Bloch theory does
not take into account the fact that the crystal is of limited extent,
illuminated by an incident field, and it neglects evanescent waves
that exist in physical situations. That is why our final step
includes a careful check with the help of rigorous numerical
codes. It also gives information on the coupling between the
incident field and the structure, which strongly depends on the
symmetries. Moreover, it is the only way to obtain the energy
transported by the different beams.
From a practical point of view, the way to find the right
parameters giving rise to anomalous refraction situations has
been pointed out. In some circumstances depicted in section 5,
the photonic crystal can simulate a homogeneous and isotropic
material with low effective index. Note that a good understanding
of photonic crystals properties is necessary in order to find these
right parameters, and we must confess that our first attempts to
design a microlens without the help of the present paper
considerations have been unsuccessful.
We have pointed out some phenomena which are not only
spectacular, but also have potential practical developments. Due
to recent technological advances, applications involving
components such as highly dispersive microprisms and
ultrarefractive microlenses should appear soon.
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