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Abstract:

We describe methods of invegtigation in order to study the behavior of photonic crystals. Our approach establishes a link between the
dispersion relation of the Bloch modes for an infinite crystal (which describes the intrinsic properties of the photonic crystal in the absence of
an incident field) and the diffraction problem of a grating (finite photonic crystal) illuminated by an incident field. We point out the
relationship between the trandation operator of the first problem, and the transfer matrix of the second. The eigenvalues of the transfer
matrix contain information about the dispersion relaion. This gpproach enables us to answer questions such as. when does ultrarefraction
occur? Can the photonic crystal smulate a homogeneous and isotropic material with low effective index? This approach also enables us to
determine suitable parameters to obtain ultrarefractive or negative refraction properties and to design optical devices such as highly
dispersive microprisms and ultrarefractive microlenses. Rigorous computations add a quantitative aspect, and demonstrate the relevance of

our approach.

1. INTRODUCTION

Photonic crystals have been the subject of considerable interest in
the last decade They have many potential technological
applications such as the development of efficient semiconductor
light emitters, filters, substrates for microwave antennas, lossless
mirrors. Consequently, photonic crystals have generated
intensive experimental and theoretical research.

Experimental studies of ultra refraction, negative refraction,
highly dispersive properties of structures based on photonic
crystal's have been reported recently 2. To our knowledge, the
most thorough study has been performed on corrugated
waveguides®. However, the electromagnetic foundations for
explaining these phenomena have not been clarified. Our
contribution clarifies these foundations, and allows us to
demonstrate specific properties of photonic crystals.

In this paper, we are interested in finite size photonic crystals
illuminated by an incident field. A priori, this problem is
different from the study of Bloch modes propagating in an
infinite crystal. Bloch theory only considers propagative modes,
whereas in a finite crystal, there are also evanescent modes. It is
well known in grating theory that evanescent modes play an
important role and cannot be neglected in a quantitative analysis.

In section 2, we recall some well-known results for Bloch waves
ininfinite crystals.

Section 3 is concerned with an actua problem of diffraction by
finite size crystals. With the help of an dementary transfer
matrix, we point out the connections between the incident field,
the eigensolutions of this matrix, and the Bloch modes of the
associated infinite structure.

In section 4, we show how these tools can be used to understand
and anticipate the qualitative behavior of limited crystals, and we
apply them to the study of anomalous refraction properties of
photonic crystals. We give examples of ultrarefraction and
negative refraction.

Sections 5 and 6 ae devoted to devices usng anomalous
refraction properties: the qualitetive rules given in the preceding
section enable us to determine the parameters that permit the
design of ultrarefractive microlenses and highly dispersive
microprisms. Rigorous computations add a quantitative aspect,
and demonstrate the relevance of our approach.

There are circumstances where evanescent modes govern the
behavior of the crystal. The simplest example is obtained inside a
bandgap, and we show in section 7 how field decay is related to
the eigenval ues of the d ementary transfer matrix.

Throughout the paper, we use a rectangular coordinate
system (O,x,y,2). The unit vectors of the axes are e, ey and e,.
We consider harmonic fields represented using a time
dependence exp(-iwt), with w=2mc/A=ck,, c being the

celerity of light in vacuum and A the wavelength. All the numeric
values of the linear measurements given in the examples are in
arbitrary units.

For the sake of smplicity, we consider in this paper two-
dimensiona photonic crystals made with lossless materials
(dielectric or perfectly conducting). However, the generalization
to three-dimensiona structures is straightforward. The reason for
regricting ourselves to 2D cases is that vast computational
means, not currently available, would be needed to rigorously
solve realistic 3D problems. The 2D photonic crystal is invariant
by trandation along the z-axis. We suppose that the total
electromagnetic field is zindependent. Consequently, the
problem reduces to two independent scalar problems that we call
E// (resp. HI/) when the dectric (resp. magnetic) field is parallel
to the z-axis. We denote by u(x,y) the relevant component of the
total field (E, or H, depending on the polarization case).

2. BLOCH SOLUTIONSIN AN INFINITE CRYSTAL

Solutions of the Maxwell equations in an infinite periodic
structure have been extensively studied 4-9. The permittivity € of
the 2D problem is invariant under two fundamental and
independent translations d and A:

for al integerspand g, &(r + pd+gA) =¢&(r) . (1)

The theoretical background is based on Bloch theorem: every
solution is a linear combination of Bloch eigenmodes. The
relevant field component of each Bloch eigenmode is such that:

U (r) =exp(i k ) v(r) , @)
where v(r) isaperiodic function:
for al integerspandq, v(r + pd+gA)=v(r) . 3

In the usual sense of the Bloch theorem, the Bloch wave vector k
is rea, since one is concerned with bounded solutions. This
assumption dso holds in the continuation of this section.

There are severa methods to obtain the solutions k(w) *°.
From these sol utions, the dispersion relationships can be derived.
In the classical presentation, the solutions are presented on a
bidimensiona diagram where the abscissa represents the edge of
the first reduced Brillouin zone. We give in figure 1 an example
of this diagram in the case of a photonic crystal made of circular
rods of radius p =0.475, with opticd index v =3, lying in
vacuum. The rods are arranged on a square lattice with period
d=127. These parameters are those of the previous
experimental and theoretical works depicted in > Apart from
section 7, al the photonic crystals used in this paper keep these
parameters. Figure 1 has been computed using a plane wave
expansion method °. It clearly shows the presence of severa
gaps. Many of the further examples of this paper will concern the
upper limit of the second gap (ordered in increasing val ues of w).
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Figure 1: Dispersion diagramfor E// polarizationin a 2D crystal
with square lattice. The abscissa represents the Bloch wave
vector on the edge of thefirst reduced Brillouin zone shown in
thesmall insert: ", X and M stand for the points with coordinates
(0,0), (71/d,0) and (rr/d,7t/d) inthe (k,, k) plane.

In order to study the transport of energy inside the crystal,
let us recall a fundamental result linking the dispersion relation
and the energy propagation . For a given Bloch wave, we
denote by V. the average velocity of the energy flow (the

averageistaken upon alattice cell):
Hoe” (Poynting vector) dr

€ Hoe” (energy density) dr

and by V, the group velocity of the same Bloch wave, deduced
from the dispersion relation w(k) by:

V. 4

ow ow
V,=grad, (W)=——e, +—e¢, . 5
g g k( ) akx X aky y ()
Theresult isthat
Ve=Vg . (6)

All these results are valid for structures that fill the entire
space. In the next section, we show the relaionship between the
external incident field of a physical problem and these Bloch
waves.

3. T-MATRIX OF APHOTONIC CRYSTAL SLICE

In this section, we make use of the T-matrix that represents the
trandation operator between the top and the bottom sides of a
grating (a photonic crystal dice). Its eigensolutions are a valuable
tool in order to understand the crystal behavior. This point of
view has already been suggested in the computation of band
structures . We show that they aso give information on
transmission properties and on the coupling between the incident
field and the Bloch waves.

3.1. Thecrystal asa grating problem; pseudo-periodicity of
thefidds

The crystal is modeled as a stack of N grids (Fig. 2). Each grid is
equivalent to a grating. As well known in grating theory, the T-
matrix that relates the field above and below a grating suffers
from the exponential growth of its elements. Consequently, the
use of the T-matrix leads to numerical problems, a least when
the sructure is composed of several grids. Many other
propagation algorithms are more suitable from this point of
view **%, As regards our objectives, we will make use of the T-

matrix related to only one grid, in such a way that the numerical
problems do not arise. On the other hand, the T-matrix contains
all the information on the propagation of the field through the
structure, and makes a simple connection between gratings
problems (N is a finite number) and Bloch waves in infinite
crystals (N infinite).

Figure 2: A crystal with finite extent with respect to the
y-direction, and made of N gratings (N = 3 on this example).
The structure is z-independent, and infinite along the x-direction.
The periodicity along x is d. The distance between two gridsis
Ay. The x-shift between two gridsis A, . Thus, thetwo

elementary trandationsared=de, and A=A, e, A, e,.

Each grating is characterized by x-periodic € ectromagnetic
parameters, which are not necessarily piecewise constant.

In a generd problem, this grating is surrounded by an
electromagnetic field with no particular properties (no radiation
wave condition, no plane wave expansion). For instance, we can
think of a problem where this grating is a slice of a thicker
photonic crystal, illuminated by a limited beam. The relevant
field component can be written as a Fourier integral :

+00 .
u(xy) = .[_oo U(a,y) exp(io x) da . (7
By splitting the integration interval ]—oo,+oo[ in subintervals
[n4r,(n+1)21], a simple change of variable leads to the other
expression:

2n/d
u(xy)= [ w0y oo ®
wheretheintegrand
U (xy)= 3 Ga+m,y) expli(+ m&H)x) ©)
m=-—o0

is a x-pseudo-periodic function® with pseudo-periodicity
coefficient a, i.e.:

Uy (X +d,y) = exp(iad) ug (x,Y) - (10)
Consequently, the study of the general field u(x,y) reduces to the
study of its pseudo-periodic components u, (x,y) for adl a in the
first Brillouin zone [0, 21t/ d] of the x-periodic problem.

3.2. Definition of the T-matrix

Figure 3: A single grating extracted fromfigure 2.

Let us isolae a grating from the complete stack (Fig. 3). The
medium above and below this grating is homogeneous and can be
arbitrarily chosen. Without loss of generaity, we assume that this



medium is the vacuum. As well known in gating theory, the
pseudo-periodic function u, (X,y) iswritten as:

fory>0:
U (6Y) =3 [An &XP(-iBmY) * Ay &Xp(+i Brny)| eXpiam¥) (11)
fory<-Ay:
U ()= 3 [ By Xp(=iBr(y+ ) + By ep(+iBo(y +4,))]
X exp(ict (X~ 8,))
(12
where )
_ T
a,=a+ mF , (13
and B,,, is defined by:
A2 + B2 = “’—22 with arg(B,,) 010,/ 2} . (14)
Cc

Denoting by A™, A*, B” and B* the infinite @lumn vectors
with A, A%, B, and B components the T-matrix is the
operator which relates the field below the grating to the field
above:

B | A | [T To)A
{BJ':'_T{AJ':'_{T& Tzz}{AJ':" (19

The T-matrix is obtained wsing any good numerical technique
able to solve the problem of figure 3, illuminated by an
appropriate plane wave (which is asociated to the required value
of a in [0, 2m/d]. In our implementation, we use anumerical
code based an a rigorous integral theory . This code is one of
the basictodsin aur laboratory for the study of gratings and non-
doped photonic aystals. It is the latest development of the
original thesis work of D. Maystre®® and has been thoroughly
checked by classic tests and comparisons with experimental data.
With the help o this code, we mmpute first the S-matrix defined
by

+ -
A_ :{31 32} A+ . (16
B S1 S2]B

From the computed S-matrix (necessxrily of finite size), we

derive a finite size approximate of the T-matrix by the dassicd
relations (which can be easily obtained from (15) and (16)):

T1=$1-$ S " S
T2=5, S,
T1=-S,"S
T =S,

The resulting finite sizetransfer matrix will be denoted by Ty, , M

being defined in such away that the summetionsin (11) and (12)
gofrom—M to +M.

17

3.3. Eigenvalues of the T-matrix

The T-matrix represents the trandaion qerator between the top
and the bottom sides of the grating. Let us consider one
eigenvalue p of the transfer matrix Ty, and let us call A, the

asciated eigenvector. The components of this eigenvector can
be regarded as A, , and Ag,m coefficients of a field ug (X, y)
defined by (11) inthe upper region (y > 0):

r[3)

Note that the field ug , (x,y) associated to the @genvector A, is
defined everywhere, and in particular in the grating region
(A, =y=<0). The wefficients B, and BJm of this field are
defined by (12) below the grating (y < -A,) and verify:

From (11) and (12), it emerges that the values of thefield u, , at
the points with coordinates (x,0) and (x+A,,y—A,) only differ
by a multipli cative coefficient L.

Let us suppose that |u| = 1. Then the multiplicative mefficient is
apure phase shift. It meansthat the restriction of uy |, inthedice

(-Ay<y=<0) can aso be mnsidered as the redriction in the

same region of the infinite 2D periodic problem of section 2. In
other words, this eigenvector represents in the slice a Bloch
solution v (r). The fields u, , and uy respectively verify Egs.

(10) and (2):

Ugu(r +d)=exp(iad) ug ,(r) , (20)

Uy (1 +d) = exp(i ked) U (r) (1)
which gives the x-component of the Bloch vector:

k., =a . (22)
Applying the second elementary translation A:

Ug (1 +A) = exp(i arg(H)) Ug , (1) (23)

Ug (r +4) =exp(i kA, —i kA u(r) (24)
give the y-component of the Bloch vector:

k, = kxAx;arg(p-) ) (25)

y

Equations (22) and (25) point out the link between the grating
problem and the Bloch solutions of the infinite structure.
Moreover, equation (25) paves the way for obtaining the
dispersion curves of the Bloch problem from the eégenvalues of
the T-matrix.

Let us suppose that |u|#1. The redtriction to the dice
(-Ay=<y=<0) of u,, associated to the eigenvector can not be a

Bloch solution with rea vector k.

Let us now consider the spectrum of the transfer matrix Ty, . We
can distinguish the two foll owing situations.

First, if there is no eigenvalue with modulus equal to 1, it could
appear evident that we aein a "gap" situation: if the aystal of
figure 2 is illuminated by an incident plane wave (with a wave
vector projection an the x-axis equal to a), the transmitted field
through the N gratings tends exponentially towards zero as N
increases. This exponentia decay is directly related to the
modulus of the @genvalue whose modulusis the dosest to 1 An
example will be given in section 7. In order to prove this
asaumption, one should consider the trandation operator T
(infinite matrix). Indeed, the trunceted matrix T, has lost some

fundamentd properties of T (such as those linked to the energy
conservation), and therefore it is difficult to quantify the

pertinence of (TM)N when N tends to infinity. This problem

involves subtle mathematics and the interested reader will find
mathematical backgroundin a recent paper 2.

Second, if thereis a least one egenvalue with modulus equal to
1, thereisno gap in the sense of the 2D crystal thet fills the etire
space. In other words, thereis at least one Bloch solution that can
propagate in the structure. If the aystal of figure 2 is illuminated
by a plane wave, the incident field can excite the Bloch solution.



But the coupling between the incident field and the Bloch
solution aso depends on numerous parameters, and in particular
on the respective symmetries of these two fidds 2%,

In any case, the field in the grating can never be reduced to a
combination of Bloch waves. The methods that rely upon this
asaumption can probably give aaurate results in some
circumstances, but their results $ould be arefully checked with
the hep o rigorous methods. The same gplies to conclusions
directly obtained from disperson diagrams of Bloch waves.
However, as will be shown in the next sections of the paper,
these dispersion diagrams are very helpful in the prediction and
the understanding o the complex phenomena that ocaur in
photonic aystal studies.

4. USEFULNESSOF THESE TOOLS

4.1. Three-dimensional dispersion diagram

From now on, we suppose that the photonic aystal has a square
lattice. Therefore, the dementary trandations are such that
A,=0 and Ay, =d. All the examples are given in the E/

polarization case.

Even though most of the information about propagating
waves (i.e. |u| = 1) can be deduced from bidimensional dispersion
diagrams as that shown in figure 1, we found tha a 3D
representation of the same diagram was more nvenient for our
purpose. Figure 4 shows the same dispersion diagram as figure 1,
but the Bloch wave vector covers the whole Brillouin zone (in
fact the square region where k, and k, belong to [0,77d])

insead of the edge of the first reduced Brillouin zone. In this
figure, each band is represented by a sheet. This diagram reveds
the omplexity of the dispersion relation d the photonic band
structure, and especially how the three higher sheets of this figure
overlap at the upper limit of the second gap.
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Figure 4: Three-dimensional dispersion diagram. The horizontal
plane gives the Bloch wave vector k. The vertical axis givesthe
normalized frequency wd/ (21c) =d/ A . The bottom sides of the
sheets are represented in darker gray. Thetriangle
corresponding to the first reduced Brillouin zone has been drawn
inthe (k,, k,) plane. The parameters arethe same asin figure 1.

The diagram has been computed using the plane wave expansion
method.

Since several interesting properties of the photonic aystals
are obtained at the limit of the gap, let us plot (Fig. 5) an enlarged
view of thisregion.
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Figure 5: Enlarged view of the 3D-dispersion diagram near the
upper edge of the second gap. Theinter section between the
sheets and the horizontal plane corresponding to the wavel ength
A = 2545 isthe curve that limits the two differently colored
regions of the sheets. Due to the slow convergence of the plane
wave expansion method, the levels of the sheets are not perfectly
accurate, and this diagram only gives qualitative information.

The problems we ae concerned with are harmonic ones.
Hence we ae interested in the intersection d the sheets and the
horizontal plane a<ciated to the actual value of w. This
intersection is pointed out (for an arbitrary chosen w) by the limit
between the two dfferently colored regions of the sheets. The
resulting curves are reported on Fig. 6. Note that the wavelength
A =2545 in Figs.5 and 6 is chosen in ader to match the
previous work of reference ™2
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Figure 6: Constant-frequency dispersion diagram and energy
flow direction for some particular values of k, . The dotted
curves are the intersection of the sheets (Fig. 5) and the
horizontal plane corresponding to A=2.545. Thereisno
propagating solution for 0.6 <k, <12. This quantitative

diagramis obtained using the T-matrix.



4.2. Constant-frequency dispersion diagram

It is worth noting that the plane wave expanson method is well
suited to dotain the Bloch solutions for a given value of the Bloch
wave vector k, and is adapted to the plot of dispersions diagrams
such as that presented in figure 1. But it suffers from a poor
convergence rate versus the number of plane waves. In our
problem, and since we ae & the edge of the gap, a very small
error in the dispersion diagram can dadtically change the
conclusions.

On the other hand, the use of the T-matrix directly gives the
solutions ky, asafunction of k, (Egs. (22) and (25)) for a given

value of the wavelength A. Moreover, this method gives a very
good acauracy and can deal with any grating structure, including
dispersive and metallic materials.

That is the reason why figure 6 has been computed by the
search of the @genvalues (with |u| = 1) of the Ty, matrix. In this
case, M =7 is sufficient to ensure agoad acauracy. The graph
shows that in this particular case, for each fixed value of k, in [-

1vd,1vd], there are zero a two gpposite values of k,, in [-17d,7d].
Remark that due to the symmetry of this crystal, if k, issolution,
—k, isalsoasolution.

Let us now focus on the propagation of the energy for a
given Bloch wave. Equations (5) and (6) tell us that the averaged
velocity of the energy flow isimmediately given by the normal to
the onstant-frequency dispersion diagram (Fig. 6). Moreover,
the ombined use of (5) and figure 5 alows us to determine the
orientation of this vector, which points towards the increasing
values of w on the sheet of Fig. 5.

4.3. Application to afinite crystal

Let us now consider a finite aystal with N graing layers,
illuminated by an incident field. We suppose in a first step that
thisincident field is a plane wave with wavevector of modulus k'
andincidence 6 with respect to the y-axis. From grating theory, it
iswell known that the pseudo-periodicity coefficient a (Eq. (10))
isgiven by:

a=k'sing . (26)
In order to make a prediction about the field behavior in the
illuminated crystal, we only consider the propagating
eigenvectors (with |u| = 1) of the Ty, matrix which, from section
3.3, are asciated with Bloch solutions of the infinite aystal.
One should be aware of the empirical aspect of this hypothesis
which neglects the evanescent solutions ( |u| # 1). One knows
that similar assumptions in grating theory can lead to erroneous
results. Nevertheless, we will see that in this way we obtain an
interesting description of the energy travel in the aystal, which
proves to be in goal agreement with aur rigorous numerical
checks. From equation (22), we know that the pseudo-periodicity
coefficient a is nothing more than the x-component of the Bloch
wave vector, which gives the link between the incident plane
wave and the Bloch solutions.

In a second step, let us suppose that the incident field is a
limited beam expressed as a plane wave packet:

+00
u'(xy)= [Al) expliox-ipa)y) da, 27)
with a =k sin@, B? =ki” - a2, and with a gaussian amplitude:
w (o —ap)? W2
a)= exp| — . 28
Aa) o p[ 4 (28)
The mean incidence 6, of the beam is such that:
oy =k'sindy . (29)

It can be noticed that the parameter W appearing in (28) is
directly linked to the incident beam width.

There is no mgjor difference with the @se of an incident plane
wave, and each component A(a) exp(ia x —iB(a)y) of the plane

wave packet has an average energy flow direction given by the
remark of section 4.2, i.e. the normal to the mnstant-frequency
dispersion diagram at the pointsgiven by k, =a.

4.4, Anomalous beam shift and ultr ar efr active behavior

Coming back to figure 6, we @n profit from the quasi-square
shape of the central curve: we illuminate the crystal by a limited
beam with ag =0.275. This value @rresponds in vacuum to a

mean incidence By =6.4° for A =2545 which are the

parameters aready used in Ref. *2 For a value W= 10 of the
beam width, the amplitude A(a) take significant values (namely
A(a) > A(ag)/5) only for 0.02<a <053. All the directions

normal to the mnstant-frequency dispersion diagram are close to
the +45° directions, depending whether the eergy flows
upwards or downwards.

These parameters are those used for the computation of figure 7.
Thistotal field map has been computed with the help of a moda
method based on scattering matrices, the fields being expressed
as Fourier Bessel series %', This method rigorously solves the
problem of a finite set of parallel rods. From this point of view,
the structure is not a grating as considered in previous sections
(infinite extent dong the x-axis). Anyway, in our case where the
incident field is a limited beam, there is no noticedle difference
between the fields diffracted by the finite set of rods and by the
grating, & least when (as can be seen on Fig. 7) the field vanishes
at both ends of the aystal. A comparison between the x-truncaed
crystal and the grating is given in Ref. *2 This modal method has
been chosen because it enables us to ded also with structures
which can not be modeled by gratings: microlenses (section 5) or
microprisms (section 6).

Figure 7 shows that our expectations concerning the average
energy flow inside the crysta are mnfirmed by the rigorous
computation. Roughly, the problem lodks like alight ray going
through a dice of material with optical index less than 1
Following the Snel-Descates law, the transmitted beam is
abnormally shifted with respect to the ais of the incident beam.
Both upward and downward drections can be interpreted by the
reflection of the beam. This example has aready been studied in
Ref. 2. But the gproach is here mmpletely different, and
probably moreintuitive.

It isworth noting that in this particular case, and since the central
curve of figure 6 is not an ellipse (and a fortiori not a circle) we
can not consider the photonic aystal as a homogeneous materid
with low effective permittivity tensor (and a fortiori with low
effective optical index). Nevertheless, this example clealy
exhibits an ultrarefractive behavior.
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Figure 7: Map of thetotal field modulus for a crystal made of
69 x 7 rodslying in vacuum and illuminated by an E// polarized
gaussian beamwith 8y = 6.4°. The crystal parameters arethe
sameasin Fig. 1. Abovethe crystal the beam reflected by the
crystal interfereswith theincident beam and generates a system
of stationary waves. Straight lines show thelocus of the
maximum incident (black), transmitted and reflected (white)
fidds.

4.5. Negativerefraction
Figure 6 shows that for large positive vaues of k,, the average

energy propagates towards the negative values of x. This
phenomenon can be checked by increasing the mean incidence to
a value 6y =40°. The corresponding field map is shown in
Fig. 8. A ray interpretation for this particular incidence will lead
to a negative refraction. Note that in order to consider the
material as a homogeneous one with negative optical index, the
constant-frequency dispersion diagram should look like a circle
centered on the I point (k, =k, =0) on a sheet that reaches its

maximum a . A similar sStuation in a 3D crystal has been
recently reported by Kosaka et al. 2.
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Figure 8: Negativerefraction. Same parametersas Fig. 7, except
6, = 40°

5. APPLICATION TO ULTRAREFRACTIVE
MICROLENSES

Ultrarefractive properties of photonic crystals have been
suggested previously **. We show here that the formalism
exposed in the previous sections is well suited to determine the
parameters that enable to engineer devices based on this
phenomenon. The aim is to design an artificial material whose
effective index is less than 1, and if possible close to zero. It
means that the constant-frequency dispersion diagram should
follow acircle
2

keZ + k% =ko® Ngs (30)

i.e. asmal circle centered on the origin in the (k,,k,) plane. In

order to obtain this property, let us decrease the frequency
associated to the horizontal intersection plane of Fig. 5. Figure 9
shows the constant-frequency dispersion diagram for two
wavelengths close to the k, =k, =0 limit of the sheet of Fig. 5.

The curvefor A; =2.56 isvery close to acircle, and the effective
index given by (30) isn; = 0.086.

Note that even if the crystal behaves as a homogeneous
material, the physical dStuation is very different from that

generally studied in homogenization works where one considers
quasi-static limits 3%,

Figure 9: SameasFig. 6 for two different wavel engths. Only the
central region is presented.

Since the index contrast with other materials is very large, new
optical elements can be imagined. For instance, let us design a
microlens composed of 295 rods of the same photonic crystal.
The width of thislens is equd to 64, i.e. 25\, and the radius of
curvature of the concave face is R=50. When illuminated by a
gaussian beam of width W=40 in norma incidence, the
transmitted field focuses a a point situated at f =53 from the
concave face (Fig. 10). Note that the same lens built in classical
material (optical index greater than 1) is divergent. On the sides
of Fig. 10, the field is principally due to the diffraction by the
edges of the lens.

A straight application of optical geometric results gives the focal
length:

f=—1 R=547, (31)
1-n

which agrees with the actual value f =53, and proves the very
good similarity between the crystal and an isotropic
homogeneous materid.

One should be aware of the fact that if the constant-frequency
dispersion diagram does not ook like a circle, there is no clear
focusing of the light.



Hloo - 02
Mo - 04
Blos - 06
06 - 08
08 - 10
[ Ji0-12

50 -40 -30 20 -10 O 10 20 30 40 50

Figure 10: The microlensisilluminated in normal incidence from
the top by a gaussian beamin E// polarization.

6. APPLICATION TOHIGHLY DISPERSIVE
MICROPRISMS

Photonic aystal prisms have been experimentaly studied and
proposed as highly dispersive components *.
As afirgt step, let us work in the range of wavelengths where the
crystal behaves as a quasi-homogeneous material. We dhose the
wavelength A, =2.56 for which the central curve of the constant-
frequency dispersion diagram lodks like a drcle (Fig. 9). The
effective optical index obtained from (30) is n, =0.086. We
consider a microprism made of 465 rods disposed in an isosceles
right-angled triangle. The side of this triangle is equal to 37, i.e.
15\ It is illuminated by a gaussan beam of width W= 10 in
normal incidence. Figure 11 shows that the bean is gang
through the hypotenuse with quasi-norma direction. In order to
precise this direction, we plot (Fig. 12) the scattered intensity at
infinity versus the diffraction angle 6 (conventiond polar angle
with horizontal axis as origin). A straight appli cation of the Snell -
Descartes law leads to the following angle 6, at the wavelength
A

n, sin45=sin(45-6,) 0 6, =415° . (32

Thisvalueisin perfect agreament with Fig. 12.

We can remark that the high index contrast implies that the
reflection is important at each interface. It could probably be
attenuated by the use of some antireflection structure.

In a second gtep, let us evaluate the dispersion. Changing the
wavelength to A, =255 shifts the maximum diffraction angle

(Fig. 12) by about 3°. By the way, since thiswavelength is farther
from the gap, the transmitted intensity is greater. Figure 9 shows
that for this wavelength, the wnstant-frequency dispersion
diagram is not a drcle, but it has no importance on the
phenomenon. Indeed, and since this problem only involves
"plane boundaries" between the crystal and the external vacuum,
the aystal does not necessarily need to behave as a homogeneous
material.

It is easy to verify that the dispersion d6/dA is much greater with
this microprism than with any other classical dispersive device
(grating, slica prism). Such microprisms could find interesting
applications in the domain o fiber optical communications, and
in perticular in wavelength multi plexing/demultiplexing.

40 -30 -20 -10 0 10 20 30 40

Figure 11: The microprismisilluminated fromtheleft by a
gaussian beamwith A; =2.56.
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Figure 12: Scattered intensity at infinity for A; =2.56 and
A, =255.

7. NON PROPAGATIVE SOLUTIONSAND T-MATRIX
FORMALISM

In the previous examples, our interpretation was based on Bloch
solutions, and the evanescent solutions were neglected. We have
shown that this point of view leads to many interesting
predictions in the transparency bands. When there is no Bloch
solution (gap), one can extract from the @genvalues of the T-
matrix some pertinent information.

The globd behavior of the field insde the aystal is governed by
the agenvectors of the T-matrix. We nsider a semi-infinite
crystal, i.e. N tends to infinity in Fig. 2, and the aystal fills the
space for y lessthan an arbitrary value.

Inside the gap, there is no eigenvalue with modulus equa to 1
All the eigenvectors are evanescent or anti-evanescent with
respect to y. Since the field should stay bounded when y tends
towards -co, only the egenvectors assciated with the
eigenvalues with modulus less than 1 are suitable. From all of
them, the one whose @genvalue i is the dosest to 1 has the

slowest decay. From this remark, for a sufficient number N of
layers, we @n expect that the energy transmission behaves as

|pl|2N (the energy islinked to the square of the d@genvector).

Weillustrate this property in the case of a photonic aystal made
of N layers of perfectly conducting rods. The radius of therodsis
equal to 001. The square @&l of the crystal has a spacing d = 1,
and the crystal is illuminated in normd incidence by a plane
wave in E// polarization, a awavelength A = 10.2. These data are
those of a previous paper *. From the T-matrix of a single layer,




we obtan |py[=0288. Figure 13 compares the decima

logarithm of the transmission (obtained with a rigorous grating
code) through a stack of N grating layers and the decimal

logarithm of |pl|2N . The dopes areidentical; thus the exponential

decay is clearly governed by this eigenvalue. This ectacular
agreement is due to the fact that in this case the moduli of the
other eigenvalues are mnsiderably smaller than |u,|. Otherwise,

one should probably consider a greater number of layersin arder
to see the predominance of ;.
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Figure 13: Exponential decay of thetransmission for a photonic
crystal made of N layers of perfectly conducting rods.

Conclusion

We have developed an efficient approach in order to predict
some of the properties gecific to photonic aystals. The
theoreticd basis has been exposed. Dispersion diagrams of Bloch
modes are useful in this context. However, the Bloch theory does
not take into account the fact that the aystal is of limited extent,
illuminated by an incident field, and it neglects evanescent waves
tha exist in physical situations. That is why our final step
includes a areful check with the help of rigorous numerical
codes. It dso gves information on the cupling between the
incident field and the structure, which strongly depends on the
symmetries. Moreover, it is the only way to dotain the energy
transported by the diff erent beams.

From a practical point of view, the way to find the right
parameters giving rise to anomalous refraction Stuations has
been pointed aut. In some circumstances depicted in section 5,
the photonic aystal can smulate a homogeneous and isotropic
material with low effective index. Note that a goad uncderstanding
of photonic aystals properties is necessary in arder to find these
right parameters, and we must confessthat our first attempts to
design a microlens without the help of the present paper
considerations have been unsuccessul.

We have pointed aut some phenomena which are not only
spectacular, but also have potential practical developments. Due
to recent technological advances, applications involving
components such as highly dispersve microprisms and
ultrarefractive microlenses sould appear soon.
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