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Modal methods often used to model lamellar gratings that include infinitely or highly conducting metallic
parts encounter numerical instabilities in some situations. In this paper, the origin of these numerical insta-
bilities is determined, and then a stable algorithm solving this problem is proposed. In order to complete this
analysis, the different geometries that can be handled without numerical instabilities are clearly defined. Nu-
merical tests of the exact modal method implemented with the proposed solution are also presented. A test of
convergence shows the efficiency of the method while the comparison with the fictitious sources method shows
its accuracy. © 2008 Optical Society of America

OCIS codes: 050.2770, 050.1755.
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. INTRODUCTION
he exact was method was proposed in 1981 to solve Max-
ell’s equations in the presence of lamellar gratings

1–3]. This method relies on the expansion of the electro-
agnetic field using an “exact eigenfunctions basis” for
hich an exact representation of the permittivity is avail-
ble. Consequently, it appears more efficient than the
sual coupled-wave method [4] based on the use of a
ourier expansion that leads to poor convergence because
f the discontinuous nature of both the electromagnetic
eld and the permittivity. When metallic materials are
onsidered, the permittivity contrast is important, and
he exact modal method is definitely a better alternative
olution.

Motivations for studying lamellar metallic gratings are
umerous. Periodic metallic structures are good candi-
ates for extraordinary transmission [5,6], compact an-
ennas [7], modified local density of states [8–10], nega-
ive index materials [11,12], etc. However, the use of the
xact modal method (as well as the coupled-wave method)
eads to numerical instabilities, even if S or R algorithms
13]—as well as modified S algorithms (also called the
resnel formulation [14])—are implemented.
In this paper, we show how to obtain a large class of so-

utions of Maxwell’s equations in the presence of lamellar
ratings that include infinitely conducting metal. We ex-
end the method presented in [15,16] in order to obtain a
uitable model for metallic structures. We show that the
umerical instabilities are due to a noninvertible matrix
orresponding to the change from a first basis to a second
asis, both with different supports. From our analysis, we
how that the solution of this numerical problem is pre-
isely the algorithm used in [17] whence we can define the
tructures that can be modeled without numerical insta-
ilities. Finally, we present numerical examples to show
hat our solution is appropriate. A convergence test shows
1084-7529/08/123099-12/$15.00 © 2
hat the method converges rapidly and is stable. In addi-
ion, a comparison of a field map with the fictitious-
ources method shows perfect agreement.

. DEFINITIONS AND NOTATIONS
n this paper, we show how to obtain solutions E� of the
elmholtz equation

��2 − �−1 � � �0
−1 � � �E� = 0, �1�

here �� is the curl operator, � is the frequency (real
umber), � is the permittivity and �0 is the vacuum per-
eability. The function � is well-defined for linear (even-

ually dispersive and absorptive) dielectric materials,
nd, in domains with infinitely conducting metal, the
lectric field is null. In order to obtain a first-order differ-
ntial equation from Eq. (1), we define

H� = ���0�−1 � � E�. �2�

quation (1) is then equivalent to the set of first-order
quations

E� = ����−1 � � H�, H� = ���0�−1 � � E�. �3�

f E� stands for the harmonic electric field, the quantity
� is then proportional to the usual harmonic magnetic

eld (the coefficient being the complex number i).
While Eqs. (1) and (3) are satisfied in linear dielectric
aterials only, the definition of the magnetic field (2) is

atisfied everywhere. We can compile these two different
ehaviors by defining the characteristic function

� = �1 in dielectric materials

0 in infinitely conducting metal� . �4�

hus, the equations we propose to solve can be reduced to
008 Optical Society of America
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E� = �����−1 � � H�, H� = ���0�−1 � � E�. �5�

Concerning the geometry, we focus on lamellar gratings
hat include infinitely conducting metal. Throughout, an
rthonormal basis �e1 ,e2 ,e3� is used, such that every vec-
or x in R3 is described by its three components x1, x2, x3.
he structure we consider is independent of the variable
2, periodic with respect to the variable x1, and with spa-
ial period d=de1:

��x + d� = ��x� = ��x1,x3�, x � R3. �6�

he unit cell associated with this grating is �0,d� and the
ne-dimensional lattice is �nd �n�Z	. Then, a lamellar
rating is a stack in the direction x3 of layers in which � is
function of the single variable x1 (see Fig. 1). In practice,

ach layer comprises infinite parallel rods with rectangu-
ar cross section (see Fig. 2): the function � is piecewise
onstant.

The exact modal method for solving Maxwell’s equa-
ions in lamellar gratings made of dielectrics is already
etailed in our previous paper [16]. In this paper, in a first
tep, each layer is considered separately and, at the end
f this first step, we obtain an elementary R matrix asso-
iated with each layer. In a second step, an R matrix as-
ociated with a stack of layers is obtained from the R al-
orithm [13] and all the elementary R matrices.

Similarly, in the present paper we focus, in a first step,
n a single layer that includes infinitely conducting
etal. From [16], it is enough to obtain the elementary R
atrix associated with such a layer. For the sake of sim-

licity, we first consider a layer made of two rods per unit
ell similar to the one represented on Fig. 2: it is located
etween the two horizontal planes defined by equations
3=0 and x3=h. The first rod is made of dielectric mate-
ial with dielectric constant �a and width a, and the sec-
nd rod is made of infinitely conducting metal (its width is
−a). Thus, defining the characteristic function

�a�x1� = �1 0 � x1 + pd � a

0 a � x1 + pd � d�, p � Z, �7�

qs. (5) restricted to the domain 0�x3�h become

E� = �a���a�−1 � � H�, H� = ���0�−1 � � E�. �8�

In Appendix A, it is shown that we can restrict our-
elves to an electromagnetic field G�=E� ,H� that satis-
es the partial Bloch boundary condition

x3

ε(x) = ε3(x1)

ε(x) = ε2(x1)

ε(x) = ε1(x1)

3rd layer

2nd layer

1st layer

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

Fig. 1. Lamellar grating made of three layers.
G��x1 + d,x2,x3� = exp�ik1d�G��x1,x2,x3�,

x1,k1,x2,x3 � R �9�

ith the x2 dependence

G��x1,x2,x3� = Ĝ��x1,k2,x3�exp�ik2x2�,

x1,x2,k2,x3 � R. �10�

he resulting reduced unknowns Ê� and Ĥ� are, for all x3
n R, elements of the Hilbert space H�k1�, the space of
quare integrable functions on the domain �0,d� of Eq.
A5) with the partial Bloch boundary condition (9).

. TRANSFER MATRIX METHOD
n the following presentation of our numerical method, we
ill often use two- and four-component vectors (and then
�2 and 4�4 matrices) in order to obtain compact nota-
ions containing all the electromagnetic field components
hich have to be taken into account.
The considered transfer matrix formalism is associated

ith the propagation variable x3 [16]. In this formalism,
he vector containing the tangential components of the re-
uced unknowns Ê� and Ĥ�,

F = 
F�1�

F�2��, F�j� =
 Ê�,j

Ĥ�,j
�, j = 1,2, �11�

s considered a function of the variable x3. As a conse-
uence, although this vector-valued function F depends
n the two variables x1 and x3, the x1 dependence will not
ppear in the following equations.
To allow focus on the main result of this paper, we re-

ort in Appendix B the details leading to the solution in
he considered layer of Fig. 2. In particular, the modal ba-
is ��a,n �n�N	 is determined by Eq. (B9) in order to ob-
ain the modal expansion of the field

F�x3� = �
n�N

Fa,n�x3��a,n, �12�

here the coefficients Fa,n�x3� are given by Eq. (B12).
rom this expansion, the relationships between the vec-

ors F�0� and F�h� can be expressed with transfer matrix
B17) or R matrix (B19). More stable numerically, the R
atrix is then used in the corresponding stacking algo-

ithm.

x2

x1

x3

layer

h
d

a

ig. 2. Layer made of two rods per unit cell. First rod has width
and dielectic constant �a. Second rod (shaded domain) has

idth d−a and is made of infinitely conducting metal; thickness
f the layer is h.
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Now, suppose that there is a second homogeneous layer
ith �=�0, �=�0 and located between the planes x3=h
nd x3=h+h0 (see Fig. 3).
In Appendix C, we show how the electromagnetic field

an be expanded in the Fourier basis ��0,p �p�Z	 [Eq.
C2)] in the homogeneous layer

F�x3� = �
p�Z

F0,p�x3��0,p, �13�

here the coefficients F0,p�x3� are given by Eq. (C6). Simi-
arly, from this expansion, the relationships between the
ectors F�h� and F�h+h0� can be expressed with R matrix
C8).

At this stage, if one uses the usual R algorithm to ob-
ain the R matrix of the stack of the two layers, then nu-
erical instabilities will appear. In Section 4, we present

ur analysis and solution of this problem.

. FROM THE FOURIER BASIS TO THE
ODAL BASIS

. Field Continuity at the Interface Separating a
amellar Layer from a Homogeneous One
he interface separating the two considered layers is lo-
ated at x3=h (Fig. 3). Just below this interface at x3
h−, the electromagnetic field is expanded on the modal
asis (12), and just above at x3=h+, the field is expanded
n the Fourier basis (13). Then the expression of the field
ontinuity at this interface requires one to change the ex-
ansion basis from the modal basis to the Fourier basis.
Let E and H be the two-component vectors containing,

espectively, the electric and magnetic part of the vector
: from Eq. (11),

E = PEF, PE = 
1 0 0 0

0 0 1 0� ,

H = PHF, PH = 
0 1 0 0

0 0 0 1� . �14�

he “modal” and Fourier coefficients associated with
hese vectors are defined from those of F in Eqs. (12) and
13) [see Eq. (B12) in Appendix B and Eq. (C6) in Appen-
ix C for more details of the definition of the coefficients of
]:

Ea,n�x3� = PEFa,n�x3�, Ha,n�x3� = PHFa,n�x3�, n � N,

x3

x1
h

h0

ad

εa

ε0

ig. 3. Stack of a homogenous layer and the layer represented
n Fig. 2. The interface delimiting these two layers is repre-
ented by the dashed line at x =h.
3
E0,p�x3� = PEF0,p�x3�, H0,p�x3� = PHF0,p�x3�, p � Z.

�15�

ote that the “modal” coefficients are identified by the
ubscript a [see Eq. (12)] and the Fourier coefficients by
he subscript 0 [see Eq. (13)]. These (two-component) co-
fficients are collected in the vectors E0, H0, Ea, and Ha
epresenting the electric and magnetic components of the
eld F:

G0�x3� = �¯,Ga,−1�x3�,Ga,0�x3�,Ga,1�x3�, ¯ ,Ga,p�x3�, ¯ �,

Ga�x3� = �Ga,0�x3�,Ga,1�x3�, ¯ ,Ga,n�x3�, ¯ �, G = E,H.

�16�

From the continuity relationship established in Appen-
ix A, the continuity condition at x3=h can be written

E�x1,h−� = E�x1,h−��a�x1� = E�x1,h+�,

H�x1,h−��a�x1� = H�x1,h+��a�x1�, 0 � x1 � d. �17�

fter expanding the electromagnetic field on the modal
Eq. (B9)] and Fourier [Eq. (C2)] bases, this continuity
ondition becomes, for the coefficients in Eq. (15),

�
n�N

�a,n
�1� Ea,n�h−� = �a �

n�N
�a,n

�1� Ea,n�h−� = �
p�Z

	0,pE0,p�h+�,

a �
n�N

�a,n
�2� Ha,n�h−� = �a �

p�Z
	0,pH0,p�h+�, 0 � x1 � d.

�18�

priori we can use two different bases (the modal or the
ourier basis) to express this condition as a linear alge-
ric equation. However, the continuity of the electric field
omponents implies a condition for all x1 in �0,d�, while
he continuity of the magnetic field components implies a
ondition for all x1 in �0,a� only. Consequently, the conti-
uity of the electric field components has to be expressed
y projection on the Fourier basis since the modal basis,
annot impose a condition for x1 in �a ,d�. On the other
and, the magnetic field components can be expressed us-

ng the Fourier basis as well as the modal basis. So, for
he vectors E0, H0, Ea, and Ha in Eq. (16), these continu-
ty conditions become

W0,a
�1� Ea�h−� = E0�h+�,

W0,a
�2� Ha�h−� = UaH0�h+� ⇔ Ha�h−� = Wa,0

�2� H0�h+�, �19�

here W0,a
�j� , Wa,0

�j� , and Ua are, respectively, the matrices
ith the 2�2 coefficients

�W0,a
�j� �p,n =

�0,d�

dx1	0,p�x1��a,n
�j� �x1�,

p � Z, n � N, j = 1,2,
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�Wa,0
�j� �n,p =

�0,d�

dx1�a,n
�j� �x1�	0,p�x1�,

n � N, p � Z, j = 1,2,

�Ua�p,q =
�0,d�

dx1	0,p�x1��a�x1�	0,q�x1�I,

p � Z, q � Z. �20�

. Origin of Numerical Instabilities
he difficulty of numerical instabilities arises from the

act that the set of plane-wave functions (C2) is a basis for
unctions on the interval �0,d� while the sets of the modal
unctions (B3) and (B8) are bases for functions on the in-
erval �0,a�. Consequently, it is possible to develop a
odal function �a,n on the set of the plane-wave functions
0,p, while the reverse is impossible. In practice (i.e., con-

erning numerical calculations), the matrices Wa,0
�j� , W0,a

�j� ,
nd Ua are not invertible (when truncated for numerical
alculations).

For instance, consider the matrix Wa,0
�j� : it represents

he basis functions 
0,pI expanded on the modal functions

a,n
�j� . After this expansion, the part of functions 
0,pI cor-

esponding to the interval �a ,d� is equal to zero. In other
ords, this expansion of functions 
0,pI is associated with
projection leading to a development of functions �a
0,pI:

�
n�N

�Wa,0
�j� �n,q�a,n

�j� = �a	0,qI � 	0,qI, q � Z. �21�

ow, if one applies the matrix W0,a
�j� to this matrix Wa,0

�j� ,
hen one cannot recover the basis 
0,pI from the set of
unctions �a
0,pI. So, from Eq. (20), the product of (infi-
ite) matrices W0,a

�j� Wa,0
�j� is not the identity for functions of

he variable x1 in �0,d�:

�
p�Z

�
n�N

�W0,a
�j� �p,n�Wa,0

�j� �n,q	0,p = �a	0,qI � 	0,qI, q � Z,

⇔W0,a
�j� Wa,0

�j� = Ua, j = 1,2. �22�

Similarly, one can show that the product of (infinite)
atrices Wa,0

�j� W0,a
�j� is the identity for functions of the vari-

ble x1 in �0,a�:

�
m�N

�
p�Z

�Wa,0
�j� �m,p�W0,a

�j� �p,n�a,m
�j� = �a,n

�j� , n � N,

⇔Wa,0
�j� W0,a

�j� = Ia, j = 1,2, �23�

here Ia is the infinite matrix with 2�2 coefficients

�Ia�m,n = � I, m = n

0, m � n� , m,n � N. �24�

he two matrices Ua and Ia are actually the expressions
f the projector associated with the function �a in two dif-
erent bases (the plane-wave basis and the modal basis).

The two relationships (22) and (23) imply that the ma-
rices W�j� , W�j� , and U are not invertible. Consequently,
a,0 0,a a
he use of the R matrix (or S matrix) algorithm, which ne-
essitates the inversion of these matrices [15,16], is asso-
iated with numerical instabilities.

. Stable Numerical Method
e think that it is necessary to find a numerically stable

echnique to invert the matrices Wa,0
�j� , W0,a

�j� , and Ua to
void the use of the transfer matrices. The idea is that, if
e add an invertible matrix I (B10) to a noninvertible ma-

rix K, then the sum �I+K� is in general invertible: for ex-
mple, with the following 2�2 matrices, one has

K = 
1 0

0 0�, �I + K�−1 = 
2 0

0 1�−1

= 
1/2 0

0 1� . �25�

To use this idea, we define the “impedance” matrix Za
ssociated with the layer of Fig. 2 by


Ea�h�

Ea�0�� = Za
Ha�h�

Ha�0��, Za = 
Za
�11� Za

�12�

Za
�21� Za

�22�� . �26�

his matrix is numerically stable and equivalent to the R
atrix (B18). Indeed, the coefficients of the matrix Za can

e deduced from the coefficients of the R matrix by iden-
ifying the expression (B18) with


Ea,n�h�

Ea,n�0�� = Za,n
Ha,n�h�

Ha,n�0��, Za,n = 
Za,n
�11� Za,n

�12�

Za,n
�21� Za,n

�22�� n � N.

�27�

Similarly, we can define the “impedance” matrix Z0 as-
ociated with the layer located between the planes x3=h
nd x3=h+h0 (Fig. 3) by


E0�h0 + h�

E0�h� � = Z0
H0�h0 + h�

H0�h� �, Z0 = 
Z0
�11� Z0

�12�

Z0
�21� Z0

�22�� .

�28�

he expression of its coefficients Z0,p (p in Z) can be de-
uced from the expression (C7) of the coeffients R0,p of the
atrix R0.
The obtained “impedance” matrix Za is expressed in the
odal basis while the matrix Z0 is expressed in the Fou-

ier basis. It is then necessary to use the continuity con-
itions (19) to obtain the impedance matrix associated
ith the two layers. To avoid “direct matrix inversion” we
ultiply Ea�h� by W0,a

�1� and we replace Ha�h� by Wa,0
�2�

0�h� in Eq. (26). Thus we obtain the relationship


E0�h�

Ea�0�� = Z̃a
H0�h�

Ha�0��, Z̃a = 
W0,a
�1� Za

�11�Wa,0
�2� W0,a

�1� Za
�12�

Za
�21�Wa,0

�2� Za
�22� � .

�29�

his matrix Z̃a is clearly obtained without numerical in-
tabilities since it is based only on matrix multiplications.

Finally, let Z0a be the impedance matrix associated
ith the stack made of the homogeneous layer and the

ayer containing infinitely conducting rods (Fig. 3):
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E0�h0 + h�

Ea�0� � = Z0a
H0�h0 + h�

Ha�0� � . �30�

his matrix can be expressed from the matrices Z0 and Z̃a

ith the group law � defined in [13,16]: Z0a=Z0� Z̃a. In
articular, the elimination of E0�h� and H0�h� in Eqs. (28)
nd (29), shows that, to obtain Z0a, the only matrix that
as to be inverted is

Z0
�22� − W0,a

�1� Za
�11�Wa,0

�2� . �31�

rom our argument (25), and since Z0
�22� is invertible, this

atrix is certainly invertible as well. Consequently, our
umerical method is expected to be stable, and indeed,
umerical results presented in Section 6 confirm this ar-
ument. Of course, this method is still valid if the matrix
0 is associated with a standard lamellar layer made of
ielectric materials.
Note that in this particular case of a stack made of ho-
ogeneous layer and a layer containing infinitely con-

ucting rods, we find that the solution for the interface at
3=h is precisely the algorithm used in [17]. A similar
rocedure has to be realized for the interface at x3=0 if
he layer below is made of dielectric materials. In Section
, we show that the solution we proposed can be extended
o other geometries and, in particular, to geometries more
omplicated than the one already considered in the litera-
ure [17].

. EXTENSION TO A STACK OF LAYERS
ONTAINING INFINITELY CONDUCTING
ODS

n this section, we show how to express without numeri-
al instabilities the continuity condition at an interface
eparating two layers containing infinitely conducting
ods.

. Basic Example
e consider the structure represented on Fig. 4 with two

djacent layers containing infinitely conducting rods. The
ew layer is located between the two horizontal planes
efined by equations x3=0 and x3=−hb. The first rod is
ade of dielectric material with dielectric constant �b and

x3

x1
h

h0

hb

a

b

d

εa

εb

ε0

ig. 4. Structure containing two adjacent layers with infinitely
onducting rods. The bottom layer is made of two rods per unit
ell: the first rod has width b and dielectic constant �b, the second
od (shaded domain) has width d−b and is made of infinitely con-
ucting metal; thickness of this layer is h .
b
idth b, and the second rod is made of infinitely conduct-
ng metal (its width is d−b). Thus, the characteristic
unction of this layer is

�b�x1� = �1 0 � x1 + pd � b

0 b � x1 + pd � d�, p � Z. �32�

Repeating what we did in Sections 3 and 4, we obtain
he impedance matrix Zb associated with the bottom
ayer:


 Eb�0�

Eb�− hb�� = Zb
 Hb�0�

Hb�− hb��, Zb = 
Zb
�11� Zb

�12�

Zb
�21� Zb

�22�� .

�33�

his impedance matrix Zb as well as the vectors Eb�0�,
b�−hb�, Hb�0�, and Hb�−hb� are expressed in the modal
asis given by Eqs. (B9) and (B10), where all the sub-
cripts a have been replaced by b.

From our analysis in Section 4, we know that it is nec-
ssary to express rigorously one modal basis (�a,n

�j� or �b,n
�j� )

sing the second modal basis (respectively, �b,n
�j� or �a,n

�j� ).
s represented on Fig. 4, suppose that

b � a ⇔ �a�b = �a; �34�

hen at the interface x3=0, the modal basis �b,n
�j� plays the

ame role as the Fourier basis at the interface x3=h, since
t has the largest support. The continuity conditions at
3=0 for the vectors Ea, Ha, Eb, and Hb should be written

Wb,a
�1� Ea�0+� = Eb�0−�,

Ha�0+� = Wa,b
�2� Hb�0−�, �35�

here Wb,a
�j� and Wa,b

�j� are, respectively, the matrices with
he 2�2 coefficients

�Wa,b
�j� �m,n = �Wb,a

�j� �n,m =
�0,d�

dx1�a,m
�j� �x1��b,n

�j� �x1�,

m,n � N, j = 1,2. �36�

Again, to avoid matrix inversion, these continuity con-
itions at x3=0 have to be included in the matrix Za,
hich becomes


Ea�h�

Eb�0�� = Ẑa
Ha�h�

Hb�0��, Ẑa = 
 Za
�11� Za

�12�Wa,b
�2�

Wb,a
�1� Za

�21� Wb,a
�1� Za

�22�Wa,b
�2� � .

�37�

his matrix Ẑa can be combined (without numerical insta-
ilities) with Zb to obtain Zab= Ẑa�Zb, the impedance ma-
rix associated with the layers a and b. Indeed, in this
ase, the only matrix that has to be inverted to obtain Zab
s

Wb,a
�1� Za

�22�Wa,b
�2� − Zb

�11�. �38�

Note that it is possible to combine the continuity con-
itions at x =0 and x =h to define the matrix
3 3
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Ẑ̃a = 
W0,a
�1� Za

�11�Wa,0
�2� W0,a

�1� Za
�12�Wa,b

�2�

Wb,a
�1� Za

�21�Wa,0
�2� Wb,a

�1� Za
�22�Wa,b

�2� � . �39�

his matrix can be combined (without numerical insta-

ilities) with Zb and Z0 to obtain Z0ab=Z0� Ẑ̃a�Zb, the im-
edance matrix associated with the three layers repre-
ented on Fig. 4.

Finally, in contrast to hypothesis (34), suppose that

a � b ⇔ �a�b = �b; �40�

hen, at the interface x3=0 the modal basis �a,n
�j� plays the

ame role as the Fourier basis at the interface x3=h, since
t has the largest support. The continuity conditions at
3=0 for the vectors Ea, Ha, Eb, and Hb have to be written

Ea�0+� = Wa,b
�1� Eb�0−�,

Wb,a
�2� Ha�0+� = Hb�0−�, �41�

here the expression of matrices Wb,a
�j� and Wa,b

�j� is given
y Eq. (36). Thus these continuity conditions have to be
ncluded in the matrix Zb, which becomes


 Ea�0�

Eb�− hb�
� = Z̃b
 Hb�0�

Hb�− hb�� ,

Z̃b = 
Wb,a
�1� Zb

�11�Wa,b
�2� Wb,a

�1� Zb
�12�

Za
�21�Wa,b

�2� Za
�22� � . �42�

his matrix Z̃b can be combined (without numerical insta-
ilities) with Za to obtain Zab=Za� Z̃b, the impedance ma-
rix associated with the layers a and b. Also, it is possible
o combine this matrix with Z̃a and then Z0 to obtain

0ab=Z0� Z̃a� Z̃b in the case of Eq. (40).

. General Case
n the general case, a layer can contain several infinitely
onducting rods (see Fig. 5). For example, to describe the
op layer of Fig. 5, we define the characteristic function

�a = �a1
+ �a2

+ ¯ + �aq
,

x3

x1

a2 a1

b2 b1

d

εa2

εb2

εa1

εb1

a′
1a′′

1a′
2a′′

2

b′1b′′1b′2b′′2

ig. 5. Structure containing two adjacent layers with infinitely
onducting rods. Each layer contains four different rods: the two
ielectric rods have widths c1=c1�−c1� and c2=c2�−c2� and dielectric
onstants �c1

and �c2
(c=a for the top layer and c=b for the bot-

om layer). The other two rods (shaded domain) are made of in-
nitely conducting metal.
�aj
= �1 aj� � x1 + pd � aj�

0 aj� � x1 + pd � aj+1� �, p � Z, �43�

rom the parameter

a = �a1�,a1�,a2�,a2�, ¯ ,aq�,aq�,aq+1� � aq+1� = d, �44�

ith q=2. Similarly, the bottom layer of Fig. 5 is de-
cribed using the characteristic function

�b = �b1
+ �b2

+ ¯ + �bl
, �45�

ith l=2.
All the calculations of Sections 3 and 4 can be realized

or each dielectric rod corresponding to characteristic
unctions �aj

�j=1,2, . . . ,q� and �bk
�k=1,2, . . . , l�. From

ur analysis of Subsection 5.A, we can deduce that it is
ossible to obtain a stable stacking algorithm if, for each
ielectric rod corresponding to �aj

�j=1,2, ¯ ,q�, there
xists a rod with the corresponding �bk

(k in �1,2, . . . , l	)
uch that

�aj
�bk

= �aj
or �aj

�bk
= �bk

. �46�

n the case where �aj
�bk

=�aj
(for example, �a2

�b2
=�a2

n the case of Fig. 5), the procedure presented from rela-
ion (34) to equation (39) has to be used. And in the case

aj
�bk

=�bk
(for example, �a1

�b1
=�b1

in the case of Fig.
), the procedure presented from relation (40) to equation
42) has to be used.

x3

x1

a1

b1

d

εa1

εb1

a′
1a′′

1

b′1b′′1

ig. 6. Structure that cannot be modeled using a numerical
tacking algorithm, since a1��b1��a1��b1�.

x3

x1

ha

hb

hc

he

a

b

c

e

d

θθr

ig. 7. Structure under consideration. The spatial period is
=20.0. The four layers have widths a=18.0, b=15.0, c=18.0,
=13.0, and thicknesses h =4.0, h =2.0, h =3.0, h =2.0.
a b c e
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Of course the condition (46) stays valid in the trivial
ase where the rod corresponding to �aj

has no connection
ith all the rods of the layer b (for example, �bk

=0 if bk�
bk�). Thus it defines definitely the condition permitting

he use of the stable numerical algorithm.

. Limits of the Stable Numerical Method
e here define precisely the conditions where the algo-

ithm we have defined cannot be used. These conditions
re the negation of Eq. (46) so they can be written

�aj
�bk

� �aj
, �aj

�bk
� �bk

, �aj
�bk

� 0. �47�

n practice, this condition corresponds to the example rep-
esented on Fig. 6.

. NUMERICAL RESULTS
o show that our numerical procedure is numerically
table, we consider the “canonic” example defined in [18]
nd repeated on a one-dimensional lattice. The structure
s then a set of periodically spaced and infinitely conduct-
ng F embedded in vacuum (see Fig. 7).
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Fig. 8. Convergence of the main reflected order (left) and of t
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ig. 9. Total reflectivity as a function of the wavelength (from
.0 to 3.0) for two different numbers of modes.
This structure is illuminated by a plane wave with
avelength equal to 2.0=0.1d, corresponding in this pa-
er to the normalized frequency �d��0�0 / �2��=0.5. The
ncident angle of this plane wave is =45°, and the conical
ngle 
=30°. Thus, the incident wavevector ki=k1e1

k2e2+k3e3 is well defined since k1=���0�0 sin  cos 	,

2=���0�0 sin  sin 
, and k1
2+k2

2+k3
2=�2�0�0. Finally, the

ncident field is s-polarized: the electric field is perpen-
icular to the incident plane, i.e., parallel to the vector
s=k2e1−k1e2.
Figure 8 shows the reflected order with larger ampli-

ude (for r� on Fig. 7, corresponding to k1+p2� /d
−k1 with p=−12 for the first component of the reflected
ave vector) and the total reflectivity as functions of the
umber of modes. It clearly shows that the algorithm is
table and convergent.

To complete this test of numerical stability, we have
epresented on Fig. 9 the total reflectivity as a function of
he wavelength 2� / ����0�0� for 21 and 101 modes. The
esult shows that the exact modal method converges very
apidly since, for 2� / ����0�0� equal to 2.0 and 3.0, there
re, respectively, 19 and 13 diffracted orders.
As a final word, we thought it would be relevant to com-

are our results to those obtained through another nu-
erical method: the fictitious-sources method. The latter,

escribed in [18–23], has the ability to solve problems of
iffraction by arbitrarily shaped objects. Moreover, it is
ell adapted to perfectly conducting materials.
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In order to handle periodic geometries, diffractive ob-
ects are embedded in a cell—a rectangular fictitious ob-
ect. Its width is the period d, its height is arbitrary (pro-
ided that the objects are entirely contained within the
ell domain), and its edges have particular properties: the
wo vertical (lateral) edges are linked to each other
hanks to periodic boundary conditions; the two horizon-
al edges are connected to surrounding media by Rayleigh
xpansions (heading upward from the topmost side and
ownward from the other one).
Getting back to our case, the electromagnetic field in-

ide the cell (but outside the F) is fed by 300 fictitious
ources located inside the F and 250 outside the cell (see
ig. 10 for the location of these sources). The boundary
onditions are enforced using a least-squares algorithm
ith 600 points on the F and 500 on the cell. Above and
elow the cell, the electromagnetic field is expressed as a
um of 51 diffraction orders.

The calculations performed by the fictitious-sources
ethod were more than 99% accurate regarding the en-

rgy balance criterion. To illustrate the comparison, we
lot a map in the neighborhood of the structure using
oth methods (see Fig. 11).
Since the contour levels and scales are identical, one

an compare the two maps of Fig. 11 and see that the
greement between the two methods is nearly perfect.

. CONCLUSION
e have shown that by using the appropriate algorithm

he exact modal method can be used to solve Maxwell’s
quations in presence of various kinds of lamellar grating
hat contain infinitely conducting metal. Note, moreover,
hat with a similar analysis, we can argue that the pro-
osed method stays valid for highly conducting metallic
arts. In that case, the only additional difficulty consists
n finding the exact eigenvalues and eigenfunctions. A so-
ution has been provided in [17] due to a perturbation
heory. Also, it has to be noted that the presence of dielec-
ric materials will not change the conclusions of the
resent paper.
The same stacking solution should be valuable if used

n conjunction with the Fourier modal method also.
Finally, the analysis can be easily generalized to the

ase of three-dimensional structures. In particular, the

ig. 11. Maps of log10�E1�—the electric field along the periodici
ethod (right).
roposed algorithm should be stable in the case of such
nteresting structures as infinitely (or highly) conducting
lates with holes.

PPENDIX A: ELECTROMAGNETIC FIELD
e assume only that the electromagnetic field satisfies

he prerequisite finite energy criterion of square integra-
ility in all horizontal planes:


R2

dx1dx2�G��x��2 � �, x3 � R, G� = E�,H�.

�A1�

As a first consequence, it is possible to apply to Eqs. (8)
Fourier transform F0 with respect to the variable x2 in

rder to take advantage of the x2 invariance:

�F0�G����x1,k2,x3� =
1

�2�


R

dx2 exp�− ik2x2�G��x1,x2,x3�,

�A2�

or all x1 ,k2 ,x3�R and G�=E� ,H�. The original solution
s then recomposed by the inverse Fourier transform.

As a second consequence of Eq. (A1), it is possible to ap-
ly to Eqs. (8) a Floquet–Bloch transform Fd with respect
o the variable x1 in order to take advantage of the x1 pe-
iodicity:

�Fd�G����x1,k1,x2,x3� = �
p�Z

G��x1 + pd,x2,x3�exp�− ik1pd�,

�A3�

or all x1 ,k1 ,x2 ,x3�R and G�=E� ,H�. The original solu-
ion is then recomposed by the inverse Floquet–Bloch
ransform

G��x1,x2,x3� =
d

2�


�−�/d,�/d�

dk1�Fd�G����x1,k1,x2,x3�,

�A4�

or all x1 ,x2 ,x3�R and G�=E� ,H�. After the application
f these Fourier (A2) and Floquet–Bloch (A3) transforms,
ˆ =F �F �G �� satisfies for G =E ,H the criterion

ction—using the modal method (left) and the fictitious-sources
ty dire
� d 0 � � � �
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�0,d�

dx1�Ĝ��x1,k1,k2,x3��2 � �, k1,k2,x3 � R, �A5�

s well as the partial Bloch boundary condition

Ĝ��x1 + d,k1,k2,x3� = exp�ik1d�Ĝ��x1,k1,k2,x3�,

x1,k1,k2,x3 � R. �A6�

hen Eq. (8) becomes

Ê� = �a���a�−1�k2
� Ĥ�, Ĥ� = ���0�−1�k2

� Ê�,

�A7�

here �k2
� is the curl operator with the partial deriva-

ion �2 replaced by ik2.
For all fixed Bloch wave vector k1, we denote by H�k1�

he Hilbert space of functions that satisfy the two condi-
ions (A5) and (A6), i.e., the space square integrable func-
ion on the domain �0,d� with the partial Bloch boundary
ondition.

As a third consequence, the combination of the square
ntegrability of Eqs. (A1) and (A5) together with Eqs. (A8)
elow imposes that (1) the tangential components of Ê�

re continuous at all the interfaces separating dielectrics
nd infinitely conducting metal [since Ĥ�= ���0�−1�

Ê� everywhere], and (2) the tangential components of
ˆ

� are continuous at all the interfaces separating dielec-
rics. More precisely, in the present case, the metallic rod
mposes the conditions

Ê�,1�x1,k1,k2,x3� = Ê�,2�x1,k1,k2,x3� = 0,

a � x1 � d, x3 = 0,h;

Ê�,2�x1,k1,k2,x3� = Ê�,3�x1,k1,k2,x3� = 0,

0 � x3 � h, x1 = 0,a. �A8�

PPENDIX B: SOLUTION OF MAXWELL’S
QUATION IN A LAYER CONTAINING
NFINITELY CONDUCTING METAL
. Determination of the Modal Basis
rom Eqs. (A7) and (A8), the components Ê�,2 and Ê�,3 of

he electric field are continuous functions of the variable
1 and satisfy the equation

��3
2 + La�Ê�,j = 0, La = �2�a�0 − k2

2 + �1
2, j = 2,3,

�B1�

here La is acting on the Hilbert space Ha�k1��H�k1� de-
ned by Ha�k1�= �
=�a� ���H�k1� ,
�0�=
�a�=0	. Let


a,n �n�N	 be the set of the eigenfunctions of La and
�a,n �n�N	 the associated eigenvalues:

La	a,n = �a,n	a,n, n � N. �B2�

he expressions of these eigenfunctions and the associ-
ted eigenvalues are
	a,n:x1 ��2

a
�a�x1�sin�n�x1/a�,

�a,n = �2�a�0 − k2
2 − �n�

a �2

. �B3�

ote that for n=0 the function 
a,0 is not an eigenfunction
f the operator La, since it is the null function. We include
t because it is more convenient for the following calcula-
ions. Developing the components Ê�,2 and Ê�,3 on this or-
honormal set of eigenfunctions, we obtain from Eq. (B1)
he (formal) expression

Ê�,j�x3� = �
n�N

	a,n
Ê�,j
�a,n��0�cos���a,nx3� + ��3Ê�,j

�a,n��

��0�
sin���a,nx3�

��a,n
�, j = 2,3, �B4�

here the coefficients Ê�,j
�a,n��0� and ��3Ê�,j

�a,n���0� are, re-
pectively, the projection the functions 
a,n of Ê�,j and

3Ê�,j,

Ê�,j
�a,n��x3� =

�0,d�

dx1	a,n�x1�Ê�,j�x1,x3�,

��3Ê�,j
�a,n���x3� =

�0,d�

dx1	a,n�x1���3Ê�,j��x1,x3�,

j = 2,3, �B5�

aken at x3=0.
From Eq. (A7), the electric field satisfies � ·Ê�=0.

hen, the expression of the first component Ê�1
of the

lectric field can be deduced from the expression (B4) of
he other two components: �1Ê�,1=−ik2Ê�,2−�3Ê�,3. In
articular, its x1 dependence can be developed on the
igenfunctions of the operator

La� = �2�a�0 − k2
2 + �1

2 �B6�

cting on the Hilbert space Ha��k1��H�k1� defined by

a��k1�= �
=�a� ���H�k1� , ��1
��0�= ��1
��a�=0	. Let

a,n� �n�N	 be the set of the eigenfunctions of La� and
�a,n �n�N	 the associated eigenvalues:

La�	a,n� = �a,n	a,n� , n � N. �B7�

The expressions of these eigenfunctions are

	a,0� :x1 ��1

a
�a�x1�,

	a,n� :x1 ��2

a
�a�x1�cos�n�x1/a�, n � N \ �0	. �B8�

ote that the numbering of the eigenfunctions of La and

a� is done such that, for all n in N, they are associated
ith the same eigenvalues given by Eq. (B3).
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Finally, the modal basis associated with the magnetic
eld is deduced from Eq. (A7): Ĥ�= ���0�−1�k2

�Ê�. The

1 dependence of the component Ĥ�,1 can be developed on
he eigenfunctions of the operator La of Eq. (B3), while
he x1 dependence of the components Ĥ�,2 and Ĥ�,3 can be
eveloped on the eigenfunctions of the operator La� of Eq.
B8).

. Transfer Matrix in the Modal Basis
e are now ready to obtain the relationship between the

ectors F�0� and F�h� in the modal basis and then the
ransfer matrix. Let the matrices

�a,n = 
�a,n
�1� 0

0 �a,n
�2� �, �a,n = 
�a,nI 0

0 �a,nI� , n � N,

�B9�

e defined from the matrix-valued functions

�a,n
�1� = 
	a,n� 0

0 	a,n
�, �a,n

�2� = 
	a,n 0

0 	a,n� � ,

n � N, I = 
1 0

0 1� . �B10�

hen, as with Eq. (B4), it is possible to develop the vector
on the sets of functions and numbers

F�x3� = �
n�N

�a,n
cos���a,nx3�Fa,n�0�

+
sin���a,nx3�

��a,n

��3Fa,n��0�� , �B11�

here the constant vectors Fa,n�0� and ��3Fa,n��0� are, re-
pectively, the projection on the matrix-valued functions
a,n of the vector-valued functions F and �3F,

Fa,n�x3� =
�0,d�

dx1�a,n�x1�F�x1,x3�,

��3Fa,n��x3� =
�0,d�

dx1�a,n�x1���3F��x1,x3�, �B12�

aken at x3=0. The coefficients ��3Fa,n��0� can be ex-
ressed from the coefficients Fa,n�0� as follows. After
liminating the vertical components Ê�,3 and Ĥ�,3, Eq.
A7) becomes, for all 0�x1�a,

�3F = MaF, Ma = 
 − ik2�a
−1�1 �a + �a

−1�1
2

− �a + k2
2�a

−1 ik2�a
−1�1

� ,

�a = �
 0 �0

�a 0 � . �B13�

In this last equation, replacing the vector F by its ex-
ression (B11) and then projecting on the functions �a,n,
ne obtains
��3Fa,n��0� = Ma,nFa,n�0�, p � N, �B14�

here

Ma,n = 
 ik2�n�/a�J�a
−1 ��2�a�0 − �n�/a�2��a

−1

− ��2�1�0 − k2
2��a

−1 ik2�n�/a�J�a
−1 � ,

J = 
− 1 0

0 1� . �B15�

ombining expression (B11) of the vector F with the rela-
ionship (B14), one obtains the expression of the vector F
n all the considered layers from its value at x3=0:

F�x3� = �
n�N

�a,n
cos���a,nx3� +
sin���a,nx3�

��a,n

Ma,n�Fa,n�0�.

�B16�

pplying this last expression at x3=h, we obtain the rela-
ionship between F�0� and F�h� in the modal basis pro-
ided by the transfer matrices Ta,n:

Fa,n�h� = Ta,nFa,n�0�, Ta,n = cos���a,nh�

+
sin���a,nh�

��a,n

Ma,n, n � N, �B17�

here the coefficients Fa,n�h� are defined taking Eq. (B12)
t x3=h.

. R Matrix in the Modal Basis
he direct use of the transfer matrix given by Eq. (B17) is
nown to be numerically unstable [13]. That is the reason
he R matrix algorithm based on a rigorous propagation
rocedure adapted to “elliptic evolution equations” is con-
idered [16]. The R matrix Ra associated with this layer
an be defined from a collection of Ra,n matrices by


Fa,n
�1� �h�

Fa,n
�1� �0�

� = Ra,n
Fa,n
�2� �h�

Fa,n
�2� �0�� ,

Ra,n = 
Ra,n
�11� Ra,n

�12�

Ra,n
�21� Ra,n

�22�� n � N. �B18�

heir expression can be obtained from the identification
f Eqs. (B17) and (B18):

Ra,n
�11� = − ��2�a�0 − k2

2�−1
��a,n

cos���a,nh�

sin���a,nh�
�a + ik2

p�

a
J� ,

Ra,n
�12� = + ��2�a�0 − k2

2�−1
��a,n

sin��� h�
�a,
a,n
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Ra,n
�21� = − ��2�a�0 − k2

2�−1
��a,n

sin���a,nh�
�a,

Ra,n
�22� = − ��2�a�0 − k2

2�−1
��a,n

cos���a,nh�

sin���a,nh�
�a − ik2

p�

a
J� .

�B19�

e have here an expression of the R matrix associated
ith each layer considered in the modal basis.

PPENDIX C: SOLUTION OF MAXWELL’S
QUATIONS IN A HOMOGENEOUS
AYER
he Fourier basis can be considered as the modal basis
ssociated with a homogeneous layer [15]. Then the solu-
ion of Maxwell’s equations in this homogeneous layer can
e written as the expression of Eq. (B16):

F�x3 + h� = �
p�N

�0,p
cos���0,px3�

+
sin���0,px3�

��0,p

M0,p�F0,p�h�, �C1�

here �0,p is the tensor product of the 4�4 unit matrix
ith the plane-wave function

	0,p:x1 ��1

d
exp�i�k1 + p2�/d�x1�, p � Z, �C2�

0,p is the product of the 4�4 unit matrix with the eigen-
alue

�0,p = �2�0�0 − k2
2 − �k1 + p

2�

d �2

, �C3�

nd the matrix M0,p is defined by

M0,p = 
k2�k1 + p2�/d��0
−1 ��2�0�0 − �k1 + p2�/d�2��0

−1

− ��2�0�0 − k2
2��0

−1 − k2�k1 + p2�/d��0
−1 �

�C4�

rom the constant 2�2 matrix

�0 = �
 0 �0

�0 0 � . �C5�

he constant vectors F0,p�h� are the Fourier coefficients of
he vector F�h�, i.e., the projection on the matrix-valued
unctions �0,p of the vector-valued function F

F0,p�x3� =
�0,d�

dx1�0,p�x1�F�x1,x3� �C6�

aken at x3=h.
Finally, the R matrix R0 associated with this homog-

nous layer can be defined from a collection of R0,p matri-
es by

F0,p
�1� �h0 + h�

F0,p
�1� �h�

� = R0,p
F0,p
�2� �h0 + h�

F0,p
�2� �h� � ,

R0,p = 
R0,p
�11� R0,p

�12�

R0,p
�21� R0,p

�22�� , p � Z, �C7�

ith their expression provided by

R0,p
�11� = − ��2�0�0 − k2

2�−1
��0,p

cos���0,ph0�

sin���0,ph0�
�0

− k2�k1 + p
2�

d �I� ,

R0,p
�12� = + ��2�0�0 − k2

2�−1
��0,p

sin���0,ph0�
�0,

R0,p
�21� = − ��2�0�0 − k2

2�−1
��0,p

sin���0,ph0�
�0,

R0,p
�22� = − ��2�0�0 − k2

2�−1
��0,p

cos���0,ph0�

sin���0,ph0�
�0

+ k2�k1 + p
2�

d �I� . �C8�
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