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Modal methods often used to model lamellar gratings that include infinitely or highly conducting metallic
parts encounter numerical instabilities in some situations. In this paper, the origin of these numerical insta-
bilities is determined, and then a stable algorithm solving this problem is proposed. In order to complete this
analysis, the different geometries that can be handled without numerical instabilities are clearly defined. Nu-
merical tests of the exact modal method implemented with the proposed solution are also presented. A test of
convergence shows the efficiency of the method while the comparison with the fictitious sources method shows

its accuracy. © 2008 Optical Society of America
OCIS codes: 050.2770, 050.1755.

1. INTRODUCTION

The exact was method was proposed in 1981 to solve Max-
well’s equations in the presence of lamellar gratings
[1-3]. This method relies on the expansion of the electro-
magnetic field using an “exact eigenfunctions basis” for
which an exact representation of the permittivity is avail-
able. Consequently, it appears more efficient than the
usual coupled-wave method [4] based on the use of a
Fourier expansion that leads to poor convergence because
of the discontinuous nature of both the electromagnetic
field and the permittivity. When metallic materials are
considered, the permittivity contrast is important, and
the exact modal method is definitely a better alternative
solution.

Motivations for studying lamellar metallic gratings are
numerous. Periodic metallic structures are good candi-
dates for extraordinary transmission [5,6], compact an-
tennas [7], modified local density of states [8-10], nega-
tive index materials [11,12], etc. However, the use of the
exact modal method (as well as the coupled-wave method)
leads to numerical instabilities, even if S or R algorithms
[13]—as well as modified S algorithms (also called the
Fresnel formulation [14])—are implemented.

In this paper, we show how to obtain a large class of so-
lutions of Maxwell’s equations in the presence of lamellar
gratings that include infinitely conducting metal. We ex-
tend the method presented in [15,16] in order to obtain a
suitable model for metallic structures. We show that the
numerical instabilities are due to a noninvertible matrix
corresponding to the change from a first basis to a second
basis, both with different supports. From our analysis, we
show that the solution of this numerical problem is pre-
cisely the algorithm used in [17] whence we can define the
structures that can be modeled without numerical insta-
bilities. Finally, we present numerical examples to show
that our solution is appropriate. A convergence test shows
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that the method converges rapidly and is stable. In addi-
tion, a comparison of a field map with the fictitious-
sources method shows perfect agreement.

2. DEFINITIONS AND NOTATIONS

In this paper, we show how to obtain solutions E,, of the
Helmholtz equation

[0®- €'V X ug'V X ]E, =0, (1)

where VX is the curl operator, w is the frequency (real
number), € is the permittivity and u, is the vacuum per-
meability. The function € is well-defined for linear (even-
tually dispersive and absorptive) dielectric materials,
and, in domains with infinitely conducting metal, the
electric field is null. In order to obtain a first-order differ-
ential equation from Eq. (1), we define

H,=(0p) 'V X E,. 2)

Equation (1) is then equivalent to the set of first-order
equations

E,=(09'V xH, H,=(0p)'VXE, (3

If E,, stands for the harmonic electric field, the quantity
H,, is then proportional to the usual harmonic magnetic
field (the coefficient being the complex number 7).

While Eqgs. (1) and (3) are satisfied in linear dielectric
materials only, the definition of the magnetic field (2) is
satisfied everywhere. We can compile these two different
behaviors by defining the characteristic function

(4)

{1 in dielectric materials

0 in infinitely conducting metal

Thus, the equations we propose to solve can be reduced to

© 2008 Optical Society of America


tayeb
Barrer 


3100 J. Opt. Soc. Am. A/Vol. 25, No. 12/December 2008

E,=V(we 'V xH,, H,=(wu) 'V xE,. (5

Concerning the geometry, we focus on lamellar gratings
that include infinitely conducting metal. Throughout, an
orthonormal basis (e, es,e3) is used, such that every vec-
tor x in R? is described by its three components x1, x9, x3.
The structure we consider is independent of the variable
X9, periodic with respect to the variable x;, and with spa-
tial period d=de;:

e(x+d) = e(x) = e(xq,x3), xe R (6)

The unit cell associated with this grating is [0,d] and the
one-dimensional lattice is {nd|n € Z}. Then, a lamellar
grating is a stack in the direction x5 of layers in which e is
a function of the single variable x; (see Fig. 1). In practice,
each layer comprises infinite parallel rods with rectangu-
lar cross section (see Fig. 2): the function € is piecewise
constant.

The exact modal method for solving Maxwell’s equa-
tions in lamellar gratings made of dielectrics is already
detailed in our previous paper [16]. In this paper, in a first
step, each layer is considered separately and, at the end
of this first step, we obtain an elementary R matrix asso-
ciated with each layer. In a second step, an R matrix as-
sociated with a stack of layers is obtained from the R al-
gorithm [13] and all the elementary R matrices.

Similarly, in the present paper we focus, in a first step,
on a single layer that includes infinitely conducting
metal. From [16], it is enough to obtain the elementary R
matrix associated with such a layer. For the sake of sim-
plicity, we first consider a layer made of two rods per unit
cell similar to the one represented on Fig. 2: it is located
between the two horizontal planes defined by equations
x3=0 and x3=h. The first rod is made of dielectric mate-
rial with dielectric constant €, and width a, and the sec-
ond rod is made of infinitely conducting metal (its width is
d-a). Thus, defining the characteristic function

1 0<x;+pd=<a
\I,a(xl)z 0 a<x1+pd<d s pEZ, (7)

Eqgs. (5) restricted to the domain 0 <x3<h become

Ew = \I,a(wea)_l vV X Han Hw = (a),lLo)_l vV X Ew' (8)

In Appendix A, it is shown that we can restrict our-
selves to an electromagnetic field G,=E,,H, that satis-
fies the partial Bloch boundary condition

xrs3
grd layer e(x) = e3(x1)
20 Jayer e(x) = ea(x1)
15 layer e(x) = e1(x1)

Fig. 1. Lamellar grating made of three layers.
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Fig. 2. Layer made of two rods per unit cell. First rod has width
a and dielectic constant €,. Second rod (shaded domain) has
width d—-a and is made of infinitely conducting metal; thickness
of the layer is h.

G, (x1 + d,x9,x3) = explik1d]G,,(x1,%2,%3),

xl7k17x27x3 eR (9)
with the x5 dependence

G (x1,%0,%5) = G (11, ko,x5)explikyxs],

xl,X2,k2,.')C3 e R. (10)

The resulting reduced unknowns Ew and I:Ia, are, for all x5
in R, elements of the Hilbert space H(k;), the space of
square integrable functions on the domain [0,d] of Eq.
(A5) with the partial Bloch boundary condition (9).

3. TRANSFER MATRIX METHOD

In the following presentation of our numerical method, we
will often use two- and four-component vectors (and then
2 X 2 and 4 X 4 matrices) in order to obtain compact nota-
tions containing all the electromagnetic field components
which have to be taken into account.

The considered transfer matrix formalism is associated
with the propagation variable x3 [16]. In this formalism,
the vector containing the tangential components of the re-

duced unknowns I:]w and I:Iw,

FO | E,,;

F=| ol FO = .| i=12, (11)
.

is considered a function of the variable x3. As a conse-

quence, although this vector-valued function F' depends

on the two variables x; and x3, the x; dependence will not
appear in the following equations.

To allow focus on the main result of this paper, we re-
port in Appendix B the details leading to the solution in
the considered layer of Fig. 2. In particular, the modal ba-
sis {®, ,|n € N} is determined by Eq. (B9) in order to ob-
tain the modal expansion of the field

F(xS) = 2 Fa,n(x3)q)a,n’ (12)
neN

where the coefficients F, ,(x3) are given by Eq. (B12).
From this expansion, the relationships between the vec-
tors F(0) and F(h) can be expressed with transfer matrix
(B17) or R matrix (B19). More stable numerically, the R
matrix is then used in the corresponding stacking algo-
rithm.
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Now, suppose that there is a second homogeneous layer
with e=¢y, u=po and located between the planes x3=h
and x3=h+h (see Fig. 3).

In Appendix C, we show how the electromagnetic field
can be expanded in the Fourier basis {®g,[p € Z} [Eq.
(C2)] in the homogeneous layer

F(xs) = 2 FO,p(x3)q)O,py (13)

peZ

where the coefficients F, ,(x3) are given by Eq. (C6). Simi-
larly, from this expansion, the relationships between the
vectors F(h) and F(h+h) can be expressed with R matrix
(C8).

At this stage, if one uses the usual R algorithm to ob-
tain the R matrix of the stack of the two layers, then nu-
merical instabilities will appear. In Section 4, we present
our analysis and solution of this problem.

4. FROM THE FOURIER BASIS TO THE
MODAL BASIS

A. Field Continuity at the Interface Separating a
Lamellar Layer from a Homogeneous One
The interface separating the two considered layers is lo-
cated at x3=h (Fig. 3). Just below this interface at x3
=h", the electromagnetic field is expanded on the modal
basis (12), and just above at x3=h*, the field is expanded
on the Fourier basis (13). Then the expression of the field
continuity at this interface requires one to change the ex-
pansion basis from the modal basis to the Fourier basis.
Let E and H be the two-component vectors containing,
respectively, the electric and magnetic part of the vector
F: from Eq. (11),

1000
E=PEF, PE=
’ {0 01 0}’

(14)

0100
0001}

H=PHF, PH={

The “modal” and Fourier coefficients associated with
these vectors are defined from those of F in Egs. (12) and
(13) [see Eq. (B12) in Appendix B and Eq. (C6) in Appen-
dix C for more details of the definition of the coefficients of

F:

Ea,n(xS) =PEFa,n(x3)’ Ha,n(xS) =PHFa,n(x3)v ne Nv

Z3

N _"%"%Ea_""h
T d 1 a

Fig. 3. Stack of a homogenous layer and the layer represented
on Fig. 2. The interface delimiting these two layers is repre-
sented by the dashed line at x3=h.
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EO,p(x3) =PEFO,p(x3)’ HO,p(xS) =PHFO,p(x3)’ pE Z.
(15)

Note that the “modal” coefficients are identified by the
subscript a [see Eq. (12)] and the Fourier coefficients by
the subscript 0 [see Eq. (13)]. These (two-component) co-
efficients are collected in the vectors E,, H,, E,, and H,,
representing the electric and magnetic components of the
field F

Go(JC3) = [ : "Ga,—l(x3)7Ga,O(x3)7Ga,l(x3)7 T 7Ga,p(x3)’ T ]’

Ga(x3) = [Ga,O(xS)’Ga,l(xii)f T 7Ga,n(x3)7 T ]7 G= E.H.
(16)

From the continuity relationship established in Appen-
dix A, the continuity condition at x3=A can be written

E(xy,h7) = E(x1,h )W, (x1) = E(xq,h7),

H(xl’h_)qfa(xl) =H(x17h+)\lja(-x1)5 0= X1 = d (17)

After expanding the electromagnetic field on the modal
[Eq. (B9)] and Fourier [Eq. (C2)] bases, this continuity
condition becomes, for the coefficients in Eq. (15),

> ONE, (A=, > ODE, (h7) =D do,Eo,h*),
neN neN peZ

Vo > OO H,n(h) =V, > o ,Hoph), 0=z =d.

a
neN peZ

(18)

A priori we can use two different bases (the modal or the
Fourier basis) to express this condition as a linear alge-
bric equation. However, the continuity of the electric field
components implies a condition for all x; in [0,d], while
the continuity of the magnetic field components implies a
condition for all x; in [0,a] only. Consequently, the conti-
nuity of the electric field components has to be expressed
by projection on the Fourier basis since the modal basis,
cannot impose a condition for x; in [a,d]. On the other
hand, the magnetic field components can be expressed us-
ing the Fourier basis as well as the modal basis. So, for
the vectors E,, Hy, E,, and H, in Eq. (16), these continu-
ity conditions become

WL E, (k) = Eo(h*),

WEAH,(h) = U Hy(hY) & Hy(h7) = W2 H ("),  (19)

where W9 WV

0.0 Woo» and U, are, respectively, the matrices
with the 2 X2 coefficients

[Wg,)a]p,n = dx1¢o,p(x1)¢gfn(x1),
[0,d]

peZ, neN, j=12,
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dxl(bt(zj,)n(xl) ¢0,p(x1) s
[0.d]

[W O]n,p

neN, peZ, j=12,

dx1¢0,p(xl)q’a(x1)d)O,q(xl)I’
[0,d]

[Ua]p,q =
peZ, qel. (20)

B. Origin of Numerical Instabilities

The difficulty of numerical instabilities arises from the
fact that the set of plane-wave functions (C2) is a basis for
functions on the interval [0,d] while the sets of the modal
functions (B3) and (B8) are bases for functions on the in-
terval [0,a]. Consequently, it is possible to develop a
modal function ®, ,, on the set of the plane-wave functions
&, ,,, while the reverse is impossible. In practice (i.e., con-
cerning numerical calculations), the matrices Wg,)o’ Wg?a,
and U, are not invertible (when truncated for numerical
calculations).

For instance, consider the matrix W(’)0 it represents
the basis functions ¢,/ expanded on the modal functions
(ID(’) After this expansion, the part of functions ¢ ,I cor-
respondmg to the interval [a,d] is equal to zero. In other
words, this expansion of functions ¢,/ is associated with
a projection leading to a development of functions ¥, ¢ ,I:

E [Wg ]n q(I)((zl)n \Pad)O,qI # ¢0,qI} qE& 7. (21)
neN

Now, if one applies the matrix W(’ to this matrix WV)
then one cannot recover the b351s ¢l from the set of
functions ¥, ¢ ,I. So, from Eq. (20), the product of (infi-
nite) matrices Wg )a W(’ ‘0 is not the identity for functions of
the variable x; in [0, d]

2 2 WDl

peZneN

Wg,)o]n,qqsO,p = \Pad)O,qI # d)O,qI? q e Z7

oW W =U,, j=1.2. (22)

Similarly, one can show that the product of (infinite)

matrices W(’) WV) is the identity for functions of the vari-
able x1 in [O a]

2 E [W(] ]m,p[W ]p,nq)((zj,)mz q)t(lj,)n’

meNpeZ

neN,

SWI WY, =1,, j=12, (23)

where I, is the infinite matrix with 2 X2 coefficients

I, m=n
[Ia]m,n =

. 24
0, m#n ’ m.n e N (24)

The two matrices U, and I, are actually the expressions
of the projector associated with the function ¥, in two dif-
ferent bases (the plane-wave basis and the modal basis).

The two relationships (22) and (23) imply that the ma-
trices Wg,)(), Wg’)a, and U, are not invertible. Consequently,
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the use of the R matrix (or S matrix) algorithm, which ne-
cessitates the inversion of these matrices [15,16], is asso-
ciated with numerical instabilities.

C. Stable Numerical Method

We think that it is necessary to find a numerically stable
technique to invert the matrices W(’) s Wg )a, and U, to
avoid the use of the transfer matrlces The idea is that, if
we add an invertible matrix I (B10) to a noninvertible ma-
trix K, then the sum [I+K] is in general invertible: for ex-
ample, with the following 2 X 2 matrices, one has

10 L |20t (120
E=lo o) UK =|g 1| =| 0 1| *

To use this idea, we define the “impedance” matrix Z,
associated with the layer of Fig. 2 by

H,(h) z z(®
= Z“[HG(O)]’ Za= Z2v ze@ | (26)
This matrix is numerically stable and equivalent to the R
matrix (B18). Indeed, the coefficients of the matrix Z, can

be deduced from the coefficients of the R matrix by iden-
tifying the expression (B18) with

[ a®] [ a,n<h)} . z\ z N
s = n e N.
E.,(0)| T Ho,n(0) |7 77| Z2D z2

(27)

Similarly, we can define the “impedance” matrix Z; as-

sociated with the layer located between the planes x3=h
and x3=h+h, (Fig. 3) by

Eo(ho+h) Hoy(ho+h) A A
Ey(h) =Z Hyh) | Zy= Ze0 z@ |

(28)

E.(h)
E,(0)

The expression of its coefficients Z, , (p in Z) can be de-
duced from the expression (C7) of the coeffients R ,, of the
matrix R,,.

The obtained “impedance” matrix Z, is expressed in the
modal basis while the matrix Z is expressed in the Fou-
rier basis. It is then necessary to use the continuity con-
ditions (19) to obtain the impedance matrix associated
with the two layers. To avoid “direct matrix inversion” we
multiply E,(h) by W ) and we replace H,(h) by Wf())
Hy(h) in Eq. (26). Thus we obtain the relationship

Eqm)| _ [How| o | WeaZd"Weo Woazy™
E 0] “[H ] "7 zwe  z®

(29)

This matrix Z, is clearly obtained without numerical in-
stabilities since it is based only on matrix multiplications.

Finally, let Z,, be the impedance matrix associated
with the stack made of the homogeneous layer and the
layer containing infinitely conducting rods (Fig. 3):
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(30)

EO(hO +h,) Ho(h0+h)
E,0) | 7% H,0)

This matrix can be expressed from the matrices Z; and Z,,

with the group law * defined in [13,16]: Zy,=Z*Z,. In
particular, the elimination of Eq(h) and Hy(h) in Egs. (28)
and (29), shows that, to obtain Z,, the only matrix that
has to be inverted is

780 - W ZWeE), (31)

From our argument (25), and since Zgzz) is invertible, this
matrix is certainly invertible as well. Consequently, our
numerical method is expected to be stable, and indeed,
numerical results presented in Section 6 confirm this ar-
gument. Of course, this method is still valid if the matrix
Zg is associated with a standard lamellar layer made of
dielectric materials.

Note that in this particular case of a stack made of ho-
mogeneous layer and a layer containing infinitely con-
ducting rods, we find that the solution for the interface at
x3=h is precisely the algorithm used in [17]. A similar
procedure has to be realized for the interface at x3=0 if
the layer below is made of dielectric materials. In Section
5, we show that the solution we proposed can be extended
to other geometries and, in particular, to geometries more
complicated than the one already considered in the litera-
ture [17].

5. EXTENSION TO A STACK OF LAYERS
CONTAINING INFINITELY CONDUCTING
RODS

In this section, we show how to express without numeri-
cal instabilities the continuity condition at an interface
separating two layers containing infinitely conducting
rods.

A. Basic Example

We consider the structure represented on Fig. 4 with two
adjacent layers containing infinitely conducting rods. The
new layer is located between the two horizontal planes
defined by equations x3=0 and x3=-h;. The first rod is
made of dielectric material with dielectric constant €, and

x3
€o ho
a €a % h
T — - — - — - — - -
b €b hy
fe———>
od o

Fig. 4. Structure containing two adjacent layers with infinitely
conducting rods. The bottom layer is made of two rods per unit
cell: the first rod has width b and dielectic constant €, the second
rod (shaded domain) has width d —b and is made of infinitely con-
ducting metal; thickness of this layer is A,.
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width b, and the second rod is made of infinitely conduct-
ing metal (its width is d-b). Thus, the characteristic
function of this layer is

1 0<x;+pd=<b
Wy(xq) = 0 bz +pd<d ’ peZ. (32)

Repeating what we did in Sections 3 and 4, we obtain
the impedance matrix Z, associated with the bottom
layer:

50 |_ [ #O | _|&7 27
Ey-hy) |~ "\ Hy-hp) " 0T |20 2|

This impedance matrix Z; as well as the vectors E;(0),
Ey(=hy), Hp(0), and Hyp(-h;) are expressed in the modal
basis given by Egs. (B9) and (B10), where all the sub-
scripts a have been replaced by b.

From our analysis in Section 4, we know that it is nec-
essary to express rigorously one modal basis (@O) or QD(’) )
using the second modal basis (respectively, @g)n or <I>(’) ).
As represented on Fig. 4, suppose that

(33)

bzacV ¥V, =V, (34)

then at the interface x3=0, the modal basis <I>(b",)n plays the
same role as the Fourier basis at the interface x3=h, since
it has the largest support. The continuity conditions at
x3=0 for the vectors E,, H,, Ep, and H}, should be written

WVE,(0%) =E,(07),
H,(0%) = W2 H,(07), (35)

where W(’ and W(’)b are, respectively, the matrices with
the 2 X2 coefﬁc1ents

dxl(bg,)m(xl)q)g,)n(xl) >
[0,d]

[ b]mn [W ]n,m=

m,neN, j=1,2. (36)

Again, to avoid matrix inversion, these continuity con-
ditions at x3=0 have to be included in the matrix Z,,
which becomes

E|_, [Hw] | 2% Z2WE
Ey0) ] TLH,0) ] T | wihz® wilz2we)
(37)

This matrix Z, can be combined (without numerical insta-
bilities) with Z; to obtain Z,,=Z,* Z, the impedance ma-
trix associated with the layers ¢ and &. Indeed, in this
case, the only matrix that has to be inverted to obtain Z,
is
WhZ22WE), -z (38)
,a“a a, .

Note that it is possible to combine the continuity con-
ditions at x3=0 and x3=h to define the matrix
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1 11 2 1 12 2
WoaZa "Wao WoiZ, W

Z,= (39)
Wi Z@OW @) D 72y
;),I)Z ((1 ) a,g) g,()l ((1 ) l(l,;J

This matrix can be combined (without numerical insta-

bilities) with Z, and Z, to obtain Zg,,=Zq*Z, * Zp, the im-
pedance matrix associated with the three layers repre-
sented on Fig. 4.

Finally, in contrast to hypothesis (34), suppose that

a=zboV,V, =V, (40)

then, at the interface x3=0 the modal basis @g}n plays the
same role as the Fourier basis at the interface x3=~A, since
it has the largest support. The continuity conditions at
x3=0 for the vectors E,, H,, E,, and H, have to be written

E,(0%) =W E,(07),

W2LH,(0%) = Hy(07), (41)

where the expression of matrices W(’a and W(’ is given
by Eq. (36). Thus these continuity conditions have to be
included in the matrix Z;, which becomes

E0) | { H,(0) }
Ey(-hy) T Hy(- hy)

1) (1) 32 1) (12
,_[wezwy wome)
b= 21) 1172 22
oWy A

This matrix Z, can be combined (without numerical insta-
bilities) with Z, to obtain Z,,=Z,*Z,, the impedance ma-
trix associated with the layers a and b. Also, it is possible
to combine this matrix with Z, and then Z, to obtain
Zoas=Zo*Zy*Zy in the case of Eq. (40).

B. General Case

In the general case, a layer can contain several infinitely
conducting rods (see Fig. 5). For example, to describe the
top layer of Fig. 5, we define the characteristic function

U, =W, +¥, +- +V,
1 2 q

x3
i / " !
Ay A ay ay, d I
NN L s .
ag a1 €as €ay

T

by \ by €b, €6,
b/l/ b/ / \ b// \ b/
2 2 1 1
Fig. 5. Structure containing two adjacent layers with infinitely
conducting rods. Each layer contains four different rods: the two
dielectric rods have widths ¢;=c-c] and cy=cj-c, and dielectric
constants €, and ¢, (c=a for the top layer and c¢=b for the bot-

tom layer). ’i‘he other two rods (shaded domain) are made of in-
finitely conducting metal.
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" / |
ay aj d

\ Nfe———

/// / /
bl bl

Fig. 6. Structure that cannot be modeled using a numerical
stacking algorithm, since a1 <bj<aj<bj.

1 a/<xi+pd<aj
v, = , peZ, 43
Y10 af <xi+pd<aj, P (43)

from the parameter

a =(ay,ay,a5,ay, **,a,,a,,0.1) ag1=d, (44)
with ¢=2. Similarly, the bottom layer of Fig. 5 is de-

scribed using the characteristic function

\I’bqubl-"\l’bz"_ +q,bl’ (45)

with /=2.

All the calculations of Sections 3 and 4 can be realized
for each dielectric rod corresponding to characteristic
functions V¥, (j=1,2,...,q) and ‘Ifb (k=1,2,...,0). From
our analys1s of Subsectlon 5.A, we can deduce that it is
possible to obtain a stable stacking algorithm if, for each
dielectric rod corresponding to V¥, (j=1,2,- ,q), there
exists a rod with the correspondlng ‘I’b (kin {1,2,...,1})
such that

W, Wy =W, or W, W, =V, (46)

In the case where V¥, \I'bk—\lf (for example, ¥, ¥, =V,
in the case of Fig. 5), 'the procedure presented from rela-
tion (34) to equation (39) has to be used. And in the case
v, \I'b =Wy, (for example, ¥, ¥, =¥, in the case of Fig.
5), the procedure presented from relatlon (40) to equation
(42) has to be used.

| d
—— 2 1he
=== // 1
=== g1
a % ha
7/
N\ O

Fig. 7. Structure under consideration. The spatial period is
d=20.0. The four layers have widths a=18.0, b=15.0, ¢=18.0,
e=13.0, and thicknesses h,=4.0, h,=2.0, h.=3.0, h,=2.0.
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reflected order
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total reflectivity

0.192 0615
0.190 | 0614

0613
0.188

0612
0.186 | |

0611
0.184
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Fig. 8. Convergence of the main reflected order (left) and of the total reflectivity (right) when the number of modes is increasing.

Of course the condition (46) stays valid in the trivial
case where the rod corresponding to \Ifaj has no connection
with all the rods of the layer b (for example, ¥} =0 if b;,
=by). Thus it defines definitely the condition permitting
the use of the stable numerical algorithm.

C. Limits of the Stable Numerical Method

We here define precisely the conditions where the algo-

rithm we have defined cannot be used. These conditions

are the negation of Eq. (46) so they can be written
‘I’ajllfbk +* \I'aj, \Ifaj‘lfbk # Wy, ‘I’aj‘lfbk #0. (47)

In practice, this condition corresponds to the example rep-

resented on Fig. 6.

6. NUMERICAL RESULTS

To show that our numerical procedure is numerically
stable, we consider the “canonic” example defined in [18]
and repeated on a one-dimensional lattice. The structure
is then a set of periodically spaced and infinitely conduct-
ing F embedded in vacuum (see Fig. 7).

>
£
>
=
L
[}
e
[}
=
05 ) 21 modes
’ 101 modes
0.4 T T T T
2.0 22 24 26 238 3.0
wavelength

Fig. 9. Total reflectivity as a function of the wavelength (from
2.0 to 3.0) for two different numbers of modes.

This structure is illuminated by a plane wave with
wavelength equal to 2.0=0.1d, corresponding in this pa-
per to the normalized frequency wd \s’%/ (2m)=0.5. The
incident angle of this plane wave is #=45°, and the conical
angle ¢=30°. Thus, the incident wavevector ki=kq e,
+koeq+kses is well defined since k1=wyeyug sin 6cos ¢,
ko= w\eopo sin Osin ¢, and k3 +k3+k%=w?€yuo. Finally, the
incident field is s-polarized: the electric field is perpen-
dicular to the incident plane, i.e., parallel to the vector
es=k2e1—k1e2.

Figure 8 shows the reflected order with larger ampli-
tude (for 6.~6 on Fig. 7, corresponding to k+p2w/d
~—k; with p=-12 for the first component of the reflected
wave vector) and the total reflectivity as functions of the
number of modes. It clearly shows that the algorithm is
stable and convergent.

To complete this test of numerical stability, we have
represented on Fig. 9 the total reflectivity as a function of
the wavelength 27/ (wv’%) for 21 and 101 modes. The
result shows that the exact modal method converges very
rapidly since, for 27/ (wv’%) equal to 2.0 and 3.0, there
are, respectively, 19 and 13 diffracted orders.

As a final word, we thought it would be relevant to com-
pare our results to those obtained through another nu-
merical method: the fictitious-sources method. The latter,
described in [18-23], has the ability to solve problems of
diffraction by arbitrarily shaped objects. Moreover, it is
well adapted to perfectly conducting materials.

Lo e
14 — ~
o °

12 H —

10 H

AT T T T T T T T T T
-4 -2 0 2 4 6 8 10 12 14 16 18

Fig. 10. Discretized objects (rectangular cell and the F). Black
points and open circles fictitious sources represent. @


tayeb
Note
represent the profile and the sources location.
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Fig. 11. Maps of log;o|E;|—the electric field along the periodicity direction—using the modal method (left) and the fictitious-sources

method (right).

In order to handle periodic geometries, diffractive ob-
jects are embedded in a cell—a rectangular fictitious ob-
ject. Its width is the period d, its height is arbitrary (pro-
vided that the objects are entirely contained within the
cell domain), and its edges have particular properties: the
two vertical (lateral) edges are linked to each other
thanks to periodic boundary conditions; the two horizon-
tal edges are connected to surrounding media by Rayleigh
expansions (heading upward from the topmost side and
downward from the other one).

Getting back to our case, the electromagnetic field in-
side the cell (but outside the F) is fed by 300 fictitious
sources located inside the F and 250 outside the cell (see
Fig. 10 for the location of these sources). The boundary
conditions are enforced using a least-squares algorithm
with 600 points on the F and 500 on the cell. Above and
below the cell, the electromagnetic field is expressed as a
sum of 51 diffraction orders.

The calculations performed by the fictitious-sources
method were more than 99% accurate regarding the en-
ergy balance criterion. To illustrate the comparison, we
plot a map in the neighborhood of the structure using
both methods (see Fig. 11).

Since the contour levels and scales are identical, one
can compare the two maps of Fig. 11 and see that the
agreement between the two methods is nearly perfect.

7. CONCLUSION

We have shown that by using the appropriate algorithm
the exact modal method can be used to solve Maxwell’s
equations in presence of various kinds of lamellar grating
that contain infinitely conducting metal. Note, moreover,
that with a similar analysis, we can argue that the pro-
posed method stays valid for highly conducting metallic
parts. In that case, the only additional difficulty consists
in finding the exact eigenvalues and eigenfunctions. A so-
lution has been provided in [17] due to a perturbation
theory. Also, it has to be noted that the presence of dielec-
tric materials will not change the conclusions of the
present paper.

The same stacking solution should be valuable if used
in conjunction with the Fourier modal method also.

Finally, the analysis can be easily generalized to the
case of three-dimensional structures. In particular, the

proposed algorithm should be stable in the case of such
interesting structures as infinitely (or highly) conducting
plates with holes.

APPENDIX A: ELECTROMAGNETIC FIELD

We assume only that the electromagnetic field satisfies
the prerequisite finite energy criterion of square integra-
bility in all horizontal planes:

dxldx2|Gw(X)|2 <®, x3€ Ra Gw= Ew’Hw'
R2
(A1)

As a first consequence, it is possible to apply to Eqs. (8)
a Fourier transform F, with respect to the variable x5 in
order to take advantage of the x5 invariance:

1
[Fo(G,)](x1,kg,x3) = __f dxg exp(— tkoxs) G, (%1,%2,X3),
V21

(A2)

for all x1,k9,x3e R and G,=E_,H,. The original solution
is then recomposed by the inverse Fourier transform.

As a second consequence of Eq. (A1), it is possible to ap-
ply to Eqgs. (8) a Floquet—Bloch transform F,; with respect
to the variable x; in order to take advantage of the x; pe-
riodicity:

[Fa(G,)](x1,k1,%9,%3) = 2 G, (x1 + pd,xy,x3)exp(- ikipd),

peZ

(A3)

for all x1,k1,x9,x3€ R and G,=E,,H,. The original solu-
tion is then recomposed by the inverse Floquet—Bloch
transform

d
G,,(x1,%9,%3) = _f diy[Fy(G,)](x1,k1,%0,%3),
(—mld,m/d)

o
(A4)

for all x1,x9,23 € R and G,=E,,H,. After the application
of these Fourier (A2) and Floquet-Bloch (A3) transforms,

G, =F,[Fo(G,)] satisfies for G,=E,,H,, the criterion
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dx1|ém(x1,k17k2ax3)‘2 <, kl,k25x3 € R’ (A5)
[0,d]

as well as the partial Bloch boundary condition

G (x1 + d, k1, ko,x5) = explikyd) G (%1, by, Bgyxs),

x1,k1,k9,x5 € R. (A6)
Then Eq. (8) becomes
E, =V, (0e) 'V, xH,, H,=(0p) 'V, xE,,
(A7)

where V,_X is the curl operator with the partial deriva-
tion d, replaced by iks.

For all fixed Bloch wave vector k1, we denote by H(k;)
the Hilbert space of functions that satisfy the two condi-
tions (A5) and (A6), i.e., the space square integrable func-
tion on the domain [0,d] with the partial Bloch boundary
condition.

As a third consequence, the combination of the square
integrability of Egs. (A1) and (A5) together with Eqs. (A8)
below imposes that (1) the tangential components of E‘w
are continuous at all the interfaces separating dielectrics

and infinitely conducting metal [since f{w=(wﬂ0)-1v
xE, everywhere], and (2) the tangential components of

H,, are continuous at all the interfaces separating dielec-
trics. More precisely, in the present case, the metallic rod
imposes the conditions

Ew,l(xl,klak%xS) =Ew,2(x17k17k2’x3) = 0>

a<x;=<d, x3=0,h;

Ew,Z(xl?kl’k%xS) =Ew,3(xl}kl’k2’x3) = O’

0<xy3<h, x;=0,a. (A8)

APPENDIX B: SOLUTION OF MAXWELL’S
EQUATION IN A LAYER CONTAINING
INFINITELY CONDUCTING METAL

1. Determination of the Modal Basis

From Eqgs. (A7) and (A8), the components Em,Z and Em’g of
the electric field are continuous functions of the variable
x1 and satisfy the equation

(B+L)E,;=0, L,=o’eu-k3+d, j=2,3,
(B1)
where L, is acting on the Hilbert space H, (k) C H(%,) de-
fined by M,(k1)={¢=Y.y|yeH(k1),¢(0)=¢(a)=0}. Let

{@an|n €N} be the set of the eigenfunctions of L, and
{Na.n|n e N} the associated eigenvalues:

La¢a,n = )\a,n(ﬁa,nﬁ n e N. (B2)

The expressions of these eigenfunctions and the associ-
ated eigenvalues are
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2
b pixy \ﬁ%wsm(nmlm),
a

nm

2
Nan = @€ g — k3 — (7) ) (B3)

Note that for n=0 the function ¢, ¢ is not an eigenfunction
of the operator L, since it is the null function. We include
it because it is more convenient for the following calcula-
tions. Developing the components Ew,z and Ewy3 on this or-

thonormal set of eigenfunctions, we obtain from Eq. (B1)
the (formal) expression

E, x5 = >, %,{Eii;"NO)cos(\Exa + (3gBem)

neN
. N
sin(yNg nx3) )
(O)’T , J=2,3, (B4)
VAa,n

where the coefficients Ei‘)"}”)(O) and (%EEZ}"))(O) are, re-
spectively, the projection the functions ¢, , of Ew ; and
(93Ea)‘]'7

By = [ drydnx)E,(x1,x5),
[0,d]

(BE@ ) wg) = | dxy by (1) (35E,, ) (x1,%5),

[0.d]

J=2,3, (B5)

taken at x3=0.
From Eq. (A7), the electric field satisfies V-Ew=0.

Then, the expression of the first component E“’l of the
electric field can be deduced from the expression (B4) of

the other two components: &1Ew’1=—ik2ﬁ'w,2—a3ﬁ]w,3. In
particular, its x; dependence can be developed on the
eigenfunctions of the operator

L, = o’e g —k5+ & (B6)

acting on the Hilbert space H,(k1) CH(k;) defined by
Ho (k1) ={e=V |y € H(k1),(019)(0)=(91¢)(a) =0} Let
{¢inln eN} be the set of the eigenfunctions of L, and
{\an|n e N} the associated eigenvalues:

Libyn=Napnbon» neN. (B7)

The expressions of these eigenfunctions are
) 1
$a,0%1 > 5‘1’11(301) ,

2
Gy nix1—> | =W (xq)cos(nmxi/a), n e N\{0}. (B8)
a
Note that the numbering of the eigenfunctions of L, and
L, is done such that, for all n in N, they are associated
with the same eigenvalues given by Eq. (B3).
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Finally, the modal basis associated with the magnetic
field is deduced from Eq. (A7): H,=(wuo)'V;, XE,,. The
x1 dependence of the component H, ; can be developed on
the eigenfunctions of the operator L, of Eq. (B3), while
the x; dependence of the components H w2 and H .3 can be
developed on the eigenfunctions of the operator L, of Eq.

(B8).

2. Transfer Matrix in the Modal Basis

We are now ready to obtain the relationship between the
vectors F(0) and F(h) in the modal basis and then the
transfer matrix. Let the matrices

o 0 Nl O
Par=| o go [ A=l Nwl |7 nel,

a,n

(B9)
be defined from the matrix-valued functions
O PR IR
o 0 ¢a,n ’ o 0 d’é,n ’
10
neN, I= o1l (B10)

Then, as with Eq. (B4), it is possible to develop the vector
F on the sets of functions and numbers

F(JC3) = E q)a,n|:COS(\’Aa,nx3)Fa,n(0)
neN

sin(y/A, ,x3)
b (GF, )00) | (B11)

/
Nila,n

where the constant vectors F, ,(0) and (d3F, ,)(0) are, re-
spectively, the projection on the matrix-valued functions
&, ,, of the vector-valued functions F and dsF,

Fa,n(x3) =

dxlq)a,n(xl)F(xl,xS) ,
[0,d]

(ﬂSFa,n)(x3) = dxcha,n(xl)(ﬂSF)(xlvxS)’ (B12)
[0.d]

taken at x3=0. The coefficients (dsF,,)(0) can be ex-
pressed from the coefficients F,,(0) as follows. After

eliminating the vertical components Ew’g and I:Iwy3, Eq.
(A7) becomes, for all 0<x;<a,

—ikyol0 O+ 0';1(?%]
2

F=M,F, M, =
3 @ “ l—aa+k§0’;1 ikZO';lﬁl

0 wu
%M{ 0]_ (B13)
e O

In this last equation, replacing the vector F' by its ex-
pression (B11) and then projecting on the functions @, ,,
one obtains

Gralak et al.
(ﬂSFa,n)(O) =Ma,nFa,n(0), p e N: (B14)

where

l iky(nla)d o

[w?e,uo — (n7la)?]oy,!
- (e ug - k3) oy ’

iletg(nﬂ'/oz)J(r;1

-10
J= 0o 1l (B15)

Combining expression (B11) of the vector F' with the rela-
tionship (B14), one obtains the expression of the vector F
in all the considered layers from its value at x3=0:

. e
J— sin(yA, ,x3)
F(x3) = 2 (Da,n COS(\“’Aa,nx3) + e Ma,n Fa,n(0)~
neN \'Aa,n
(B16)

Applying this last expression at x3=h, we obtain the rela-
tionship between F(0) and F(h) in the modal basis pro-
vided by the transfer matrices T, ,:

Fop(h) =Ty Fon(0), T, =cos(\Ag,h)

sin(\A, ,h)

+ n e N, (B17)

— a,n>

\“’Aa,n

where the coefficients I, ,,(h) are defined taking Eq. (B12)
at xg=h.

3. R Matrix in the Modal Basis

The direct use of the transfer matrix given by Eq. (B17) is
known to be numerically unstable [13]. That is the reason
the R matrix algorithm based on a rigorous propagation
procedure adapted to “elliptic evolution equations” is con-
sidered [16]. The R matrix R, associated with this layer
can be defined from a collection of R, ,, matrices by

FV(h) [F(fi(h)]
, =R(Z,n ) >

F,0) )
R R
Ry, = [Rﬁfi) R n e N. (B18)

Their expression can be obtained from the identification
of Egs. (B17) and (B18):

—

RV = _[o? E21| Vo O Wa) kT
an = T LO €My — / ,,—/—U +iRy— P
K a 2 A anSln(\r)\a,nh) a o

\‘")\a,n

R(Y = +[@epo - k3] ' ——=—0,
¢ sin(V\gnh)
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I\
Ya,n
R =-[w?e,uo— k3 ' ——=— ——0,,
¢ 2 sin(y\, ,h) ¢
—
cos(y\\y ,h) pw
R(22 =—[w?e o — kY| Y\ ,n+(ra —ikg—d
sin(\\, ,h) a

(B19)

We have here an expression of the R matrix associated
with each layer considered in the modal basis.

APPENDIX C: SOLUTION OF MAXWELL’S
EQUATIONS IN A HOMOGENEOUS
LAYER

The Fourier basis can be considered as the modal basis
associated with a homogeneous layer [15]. Then the solu-
tion of Maxwell’s equations in this homogeneous layer can
be written as the expression of Eq. (B16):

F(xs+h)= 2 by, |: COS(\;‘"A_O’px:g)

peN
sin(\r’Ao,px3)
+ /A— MO,p FO,p(h)’ (Cl)
V0,p

where @, is the tensor product of the 4 X4 unit matrix
with the plane-wave function

1
ho x> 7 expli(k, + p27/d)x,], peZ, (C2)

Ao is the product of the 4 X 4 unit matrix with the eigen-
value

) ) 27\ 2
No,p = 0 €oprg — kg — kl"'P? ) (C3)

and the matrix M, , is defined by

{kz(kl +p2mld)oy [wiegmo— (ky + p277/d)2]0'61]
0p=

— (wPeug — k2ot — ky(ky + p2ald) oy’
(C4)
from the constant 2 X 2 matrix
0 u
= w{ 0} . (C5)
€y O

The constant vectors F ,(h) are the Fourier coefficients of
the vector F(h), i.e., the projection on the matrix-valued
functions @, of the vector-valued function ¥

dxlq)O,p(xl)F(xbe) (Ce)
[0,d]

FO,p(xS) =

taken at x3=h.

Finally, the R matrix R, associated with this homog-
enous layer can be defined from a collection of R, , matri-
ces by
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Fopho+h) | | FGyho+h)
F)(h) | FEm |

Ry, = [Rg;) R | P2 (7

with their expression provided by
COS(\ Nopho)

11
Rg,p) == [w2€0M0 2] —,
sm(\ﬂ)\op 0)

27
— kol k4 +P7 I,

“”x_

_ NA0,p
R(? = + [0 eouo— k3] ' ——=—
Sln(\y’)\o,pho)

—

VAo p

21 —
Rg,p) = - [w®euo - 2] .
Sln(\)\Op O)
—cos(y 7\op 0)
sin(\/}\o,p 0)

27

Rifﬁ) -[o®eouo - k31 [ )\0
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