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Abstract

In a recent paper, J.B. Pendry [J.B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 86 (2000) 39
has mentioned the possibility of making perfect lenses using a slab of left-handed material with relative permeab
permittivity equal to−1. He gave a demonstration of the vital influence of the evanescent waves in this process, argu
these waves are amplified inside the slab. In the present paper, we first try to give a rigorous electromagnetic dem
of Pendry’s statement, and we show that in fact the integral expression of the field in a region of space diverges. S
divergence does not prove that the perfect lens does not exist, we then give a very simple theoretical demonstrat
homogeneous material with both relative permittivity and permeability equal to−1 cannot exist, even for a unique frequen
However, thanks to the heterogeneous nature of a metamaterial, it is shown that a material able to focus light more e
than current devices (but not perfectly) could exist. Finally, it is shown that a plane slab of dielectric photonic crystal c
focus light, a property which could be crucial for construction of superlenses in the visible and infrared regions.To cite this
article: D. Maystre et al., C. R. Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Métamatériaux : des microondes au domaine visible.Dans un récent article, J.B. Pendry [J.B. Pendry, Negative refra
makes a perfect lens, Phys. Rev. Lett. 86 (2000) 3966–3969] a mentionné la possibilité d’élaborer des lentilles pa
utilisant une couche plane de matériau main gauche dont les permittivité et perméabilité relatives sont égales à−1. Dans
sa démonstration, Pendry montre l’importance capitale des ondes évanescentes dans cette propriété, ces ondes s
amplification dans le matériau main gauche. Dans cet article, nous donnons d’abord une démonstration électrom
rigoureuse du résultat énoncé par Pendry. Nous relevons qu’en fait, l’expression intégrale du champ diverge dans un
région de l’espace. Cette remarque ne démontre évidemment pas que la lentille parfaite n’existe pas. Nous donnon
démontration théorique simple qu’un métamatériau possédant une permittivité et une perméabilité relatives égales à−1 ne peut
exister, même à une seule fréquence. Toutefois, en prenant en compte la nature hétérogène d’un métamatériau, on p
qu’un matériau capable de focaliser la lumière plus efficacement qu’un dispositif classique (mais non parfaitement) pe
Finalement, nous montrons qu’une couche planaire d’un cristal photonique diélectrique peut lui aussi focaliser la lum
propriété qui pourrait se révéler cruciale pour la construction de superlentilles dans les domaines visible et microonPour
citer cet article : D. Maystre et al., C. R. Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Left-handed materials have raised a growing interest in the last years [1–17]. Veselago [13] in the 1960s, predicted s
properties of negative refraction (with optical index equal to –1) for a material with both relative permittivity and perme
equal to−1. More recently, Pendry announced a remarkable property [1]: a slab of left-handed material constitutes a
stigmatic lens. According to Pendry, the explanation of this phenomenon relies on the fact that, when the slab is illu
by a point source, the evanescent part of the incident field, and not only the radiative part, contributes to the focusing
allowing formation of a perfect image. It has been proposed to design left-handed materials in the microwave doma
metal-dielectric periodic structures, such as periodic arrays of copper split ring resonators and wires [18–20]. Mak
metal-dielectric structures at the optical scale seems very difficult. Furthermore, it should be remembered that met
optical region present losses. However, a recent paper [12] has reported the possibility of making materials presentin
refraction phenomena using simple dielectric photonic crystals, which makes it possible to design such structures in t
region.

In this paper, we first deal with the notion of perfect lens using the rigorous laws of Electromagnetics. We sh
the rigorous electromagnetic demonstration of the property of perfect focusing is incorrect since the integral electro
expression of the field diverges in a given region of space, a fact which, of course, does not entail that the result given b
is false. In fact, a very simple theoretical demonstration based on the notion of the analytic continuation of the field a
to show that a material having both relative permittivity and permeability equal to−1 cannot exist. Furthermore, we show th
a strong limitation to the realization of perfect lenses lies actually on the heterogeneous nature of the material: the c
effective medium cannot be used for a slab of left-handed metamaterial illuminated by a point source, due to the vital
of evanescent waves having a transverse wavelength of the order or less than the dimensions of the dielectric an
inclusions.

Surprisingly, the consequence of this explanation is that a slab of left-handed material could provide a means to fo
more efficiently than current devices, such as classical optical lenses, provided the size of the elementary cell of the m
small enough.

Finally, we give a numerical demonstration that a very classical dielectric photonic crystal is able to focus ligh
property could make it possible to construct superlenses in the visible and infrared regions, where metal-dielectric s
have important losses.

2. Negative refraction of propagating waves, amplification of evanescent waves, Pendry’s perfect lens

Let us calculate the plane wave expansions of the field generated by a two-dimension (2D) point source (or in othe
line source) illuminating a slab of left-handed material in the three regions of space.

The point sourceS is located at a distanceys above the upper interface of the slab of left-handed material having a re
permittivity ε and a relative permeabilityµ equal to−1 at frequencyω. The width of the slab is equal toe and throughout the
paper, we assume thate > ys . The field iss-polarized, with the electric field parallel to thez-axis of a Cartesian coordinate
systemxyz, thex-axis being located at the upper interface (Fig. 1).

Using a time dependency in exp(−iωt), the field emitted by the point sourceS of ordinateyS at a pointM is given by

ES = H
(1)
0 (k0SM) (1)

with k0 = 2π/λ0 the wavenumber in vacuum (k0 = ω/c, c velocity of light in vacuum andλ0 wavelength in vacuum) andH(1)
0

the Hankel function of the first kind and zeroth order. Let us recall that this function is nothing but the Green function
Helmholtz equation in vacuum, which satisfies

∇2Es + k2
0Es = 4iδ(x)δ(y − ys) (2)

with δ(x)δ(y − ys), the Dirac distribution, placed at the point source. Let us callE(x,y) the total field generated at any poi
of space by this point source. Bearing in mind thatεµ = 1 in the left-handed material, the field satisfies in the three region
space the Helmholtz equation

∇2E + k2
0E = 4iδ(x)δ(y − ys) if y > 0 (3)

∇2E + k2
0E = 0 if − e < y < 0 (4)

∇2E + k2E = 0 if y < −e (5)
0
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Fig. 1. Presentation of the problem.

Fig. 1. Présentation du problème.

At the interfaces between the different media,E and 1
µ

∂E
∂y

are continuous, or in other words, the field is symmetric and
derivative iny is anti-symmetric on both interfaces. Using the Weyl formula [21], the Hankel function can be express
pointM in the form of a sum of plane waves above and below the point source:

H
(1)
0 {k0SM} = 1

π

+∞∫
α=−∞

1

β(α)
exp

{
iαx + iβ(α)|y − yS |}dα (6)

with

β(α) =
√

k2
0 − α2 or i

√
α2 − k2

0 (7)

Below the point source,y − yS is negative and Eq. (6) takes the form

H
(1)
0 {k0SM} = 1

π

+∞∫
α=−∞

1

β(α)
exp

{
iαx − iβ(α)(y − yS)

}
dα = 1

π

+∞∫
α=−∞

exp{iβ(α)yS}
β(α)

exp
{
iαx − iβ(α)y

}
dα (8)

This equation shows that the slab is illuminated by a sum of plane waves, including propagating and evanescent on
present paper, we call evanescent a wave which propagates parallel to the slab and behaves exponentially along the
direction.

Let us calculate the field transmitted below the slab by each of these incident waves. With this aim, we consider the
evanescent) incident wave propagating above the slab

Ei = exp
{
iαx − iβ(α)y

}
(9)

The total field generated above the slab by this plane wave can be written:

0< y < yS, E = exp
{
iαx − iβ(α)y

} + r exp
{
iαx + iβ(α)y

}
(10)

Inside the slab, sinceε andµ are equal to−1, the wavenumber, and thus the propagation constantβ(α) remains unchange
and, taking into account the reflections on both sides of the slab,

−e < y < 0, E = a exp
{
iαx − iβ(α)y

} + b exp
{
iαx + iβ(α)y

}
(11)

It is worth noting that we make no assumption on the shape of the field inside the slab: both possibilities (up-go
down-goingy-propagating waves,y-increasing andy-decaying, termed as anti-evanescent and evanescent in the followin
included in our expression of the field. The same remark can be made on the calculations made in [15–17] which
successively all the possibilities of decaying and decreasing waves.
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Finally, below the slab, the radiation condition in vacuum allows us to write the transmitted field in the form:

y < −e, E = t exp
{
iαx − iβ(α)y

}
(12)

In order to calculate the coefficientsa, b, r, t , we must express the boundary conditions on both interfaces of the slab.
From the continuity ofE, it turns out that

1+ r = a + b (13)

a exp
{
iβ(α)e

} + b exp
{−iβ(α)e

} = t exp
{
iβ(α)e

}
(14)

and from the continuity of1µ
∂E
∂y

−1+ r = −(−a + b) = a − b (15)

−a exp
{
iβ(α)e

} + b exp
{−iβ(α)e

} = −(−t exp
{
iβ(α)e

}) = t exp
{
iβ(α)e

}
(16)

From Eqs. (13)–(16), it comes out from straightforward calculations

r = a = 0 (17)

b = 1 (18)

t = exp
{−2iβ(α)e

}
(19)

It is worth noticing that inside the slab, ifβ(α) is real, the phase velocity is oriented towards the upper interface. Whenβ(α)

is imaginary, the amplitude of the evanescent wave does not decay away exponentially from the upper interface but
exponentially. These properties could seem unphysical, but it must be recalled, firstly, that the propagation of energy is
the group velocity (which in a left-handed material is just the opposite of the phase velocity) and, secondly, that an ev
wave does not propagate energy in they-direction. Anyway, in the present paper, we have not made any hypothesis abo
behavior of the wave inside the slab and our result is a direct consequence of the elementary laws of electromagne
worth noticing that the model of a slab differs from that of a semi-infinite medium, which is used in the first part of [1].

Finally, from Eqs. (8), (12) and (19), it is possible to express the field generated inside and below the slab by the poi

−e < y < 0, E = 1

π

+∞∫
α=−∞

1

β(α)
exp

{
iαx + iβ(α)(y + yS)

}
dα (20)

y < −e, E = 1

π

+∞∫
α=−∞

exp{iβ(α)yS}
β(α)

exp
{−2iβ(α)e

}
exp

{
iαx − iβ(α)y

}
dα

= 1

π

+∞∫
α=−∞

1

β(α)
exp

{
iαx − iβ(α)(y − yF )

}
dα (21)

yF = yS − 2e (22)

In the slab, at the ordinate−yS of the pointS̃, it emerges from Eq. (20) that the field is identical to that obtained a
ordinate+yS , which includes the point sourceS (see Eq. (8)). This property shows thatS̃ is a point image. The same proper
holds at the ordinateyF = yS − 2e of the pointF .

From this section, it emerges that the slab of left-handed material has generated two stigmatic images of the poin
the first one in the slab, the second one below the slab. It is worth noting that the image located below the slab is dedu
the point source through a vertical translation of−2e. Thus, the image of an object located above the slab will be an iden
object located below the slab.

3. Criticisms on Pendry’s perfect lens

3.1. Divergence of the expression of the field between two images

In this section, it is shown that the expression of the field given in Section 2 diverges in a region of space. Inside
belowS̃, y +yS becomes negative and the integrandI in the right-hand member of Eq. (20) increases exponentially as|α| tends
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to infinity, a fact already shown in [16,17]. The same remark holds for the expression given by Eq. (21) of the field betw
bottom of the slab and the point imageF given by, sincey − yF becomes positive.

Do these remarks authorize us to claim that the result about the perfect lens stated by Pendry fails? We do not think
a correct result can be obtained from an incorrect demonstration. Secondly, a problem of divergence of integrals or s
sometimes be solved using a new mathematical definition of the convergence. For example, the Padé theory allows o
a mathematical sense to series which obviously diverge from the point of view of the physicist.

Thus, in order to demonstrate that the perfect lens does not exist, it is necessary to show that it violates a basic pr
Physics. This is what we do in the next subsection.

3.2. Why a left-handed material withε = µ = −1 does not exist

Let us define a functionU(x,y) for y > −e by

U(x,y) =
{

E(x,y) if y > 0
E(x,−y) if − e < y < 0

(23)

This function is symmetrical with respect to thex-axis, which entails that∂U
∂y

is anti-symmetrical, or in other words th
they-derivative ofU identifies with they-derivative ofE on both sides of thex-axis. Since bothE andU are continuous, i
emerges that the functionF = E − U and itsy-derivative are continuous on thex-axis. Finally, these functions satisfy in th
two upper regions the Helmholtz equation in the sense of distributions, except maybe at the point source and at the sy
point S̃ with respect to thex-axis (due to the termE(x,−y) in the definition ofU in Eq. (23)). In fact, the right-hand member
Eq. (3) satisfied byE and located at the point source disappears forF since, by definition,F vanishes fory > 0. In conclusion,
due to the its continuity and the continuity of itsy-derivative,F satisfies fory > −e the homogeneous Helmholtz equatio
except maybe at the point(0,−ys) where a Dirac function could appear in the right-hand member.

The consequence of this property is crucial. Indeed, a mathematical theorem states thata function satisfying the Helmholt
equation in a given domain and known in a given sub-domain can be analytically continued in a unique manner in th
domain[21–23]. It is important to notice that this theorem deals with the analytic continuation of functions of two var
satisfying a Helmholtz equation in thexy plane and not with the analytic continuation of functions of the complex vari
x + iy in the complex plane. A straightforward consequence of this theorem is that if this function vanishes in a sub-do
vanishes in the entire domain. Here,F vanishes in the sub-domainy > 0, thus it vanishes in the entire domain where Helmh
equation is satisfied,y > −e, including at the point(0,−ys) since obviously the continuation ofF has no singularity at this
point. Thus it turns out thatE(x,−y) andE(x,y) identify when−e < y < 0. SinceE(x,−y) (field above the interfacey = 0)

has a singular partES = H
(1)
0 (k0SM) and since the field reflected by the interfacey = 0 has no singularity above this interfac

we deduce that ife > ys , E(x,y) has the same singularity below the interfacey = 0 and contains a singular part

ẼS = H
(1)
0 (k0S̃M) (24)

This behavior is not acceptable since the field transmitted inside the film cannot have singularities or, in other words
inside the film cannot contain a point-source, since we have assumed that the only point source was located above th
are led to the conclusion that a left-handed material with both relative permittivity and permeability equal to−1 cannot exist,
even at a unique wavelength, since it violates a fundamental principle of Electromagnetics: the field generated by a un
source cannot include another point source.

Our conclusion on the impossibility of elaborating a homogeneous material having both relative permittivity and per
ity equal to−1 seems to be in contradiction with experimental results [20] which showed the phenomenon of negative re
in metallo-dielectric metamaterials. The aim of the next section is to show that this paradox can be explained by the
validity of the homogenization process for bounded objects made with metamaterials.

Furthermore, it will be shown that metallo-dielectric metamaterials could provide a means for constructing remarka
non-perfect) lenses.

3.3. Why a material close to a left-handed material withε = µ = −1 can exist

It has been shown that the evanescent and anti-evanescent waves play a vital role in the existence of a diverge
field inside and below the slab. Let us introduce the transverse wavelengthλT = 2π/α of such a wave,α being the propagation
constant on thex-axis of this evanescent or anti-evanescent wave. This transverse wavelength is the period of the fieldx-
axis, which is the direction of propagation of the evanescent waves. In experimental devices, the metamaterials have
structure, with a period typically 6 times smaller than the wavelength of the light [20]. Let us denote byd the period of the
metamaterial on thex-axis. As far as the transverse wavelengthλT remains much greater than the periodd , one can predic
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that the homogenization process, which assumes that the heterogeneous material can be replaced by an homogene
with effective relative permittivity and permeability (here equal to−1) is valid. On the other hand, when the order of magnit
of λT approaches or becomes smaller thand , obviously the homogenization process fails since the field presents varia
at the scale of the period of the structure. This phenomenon is very well known in the domain of near-field microsco
use of optical antennas placed very close to a rough surface allow the specialists of this technique to generate incid
containing evanescent waves with transverse wavelengths very small with respect to the actual wavelength of the lig
As a consequence, they are able to determine details of the roughness less than 10−2 or 10−3 wavelengths [24]. This is th
proof that the phenomenon of scattering generated by such incident waves on a rough surface is strongly influenc
asperities, even though they are much smaller than the wavelength. In our case, the period of the metamaterial play
role as the size of the asperities.

Furthermore, some specialists of the homogenization process have stressed the limits of the notion of effective m
bounded objects. In contrast with most of the studies in this field, which assume that the heterogeneous material is u
and that the wavelength tends to infinity, they keep constant the bounded shape of the object and the wavelength,
period of the heterogeneous material tends to 0 [25]. In our case, the interfaces of the slab allow propagation of ev
and anti-evanescent waves along thex-axis and this is the origin of the inadequacy of the homogenization process. O
other hand, in a given range of values ofα, the transverse wavelength is much larger than the period of the crystal an
homogenization process is valid. Let us show that this property allows us to predict that, even though the perfect len
exist, slabs of left-handed materials could provide a means to elaborate lenses with very strong focusing properties
the period of the metamaterial is small enough.

From the studies on homogenization, it emerges that the approximate limit of validity of homogenization of a struct
periodd in which a wave of periodλT = 2π/|α| propagates is given by

λT > 2πd (25)

which can be written

|α| < 1

d
(26)

This means that the part of the integrals of Eqs. (20) and (21) exterior to the interval given by Eq. (26) has no
meaning, since outside this interval, the material cannot be considered as homogeneous. In other words, only the p
integral located inside this range contributes to the phenomenon of focusing and in practice, the integral must be limit
finite range, called homogenization region in Fig. 2.

Of course, all materials present heterogeneities, including those that can be found in nature. However, for these m
size of the heterogeneities is of the order of a nanometer. It is not so in left-handed materials, where the heterogene
the same order of magnitude as the wavelength of light and consequently have a crucial effect on propagation proper

The images inside and below the slab are no longer points. The order of magnitude of the size of the image, dedu
Eq. (26), is equal to 2πd = λT . If λ0/d has the same order of magnitude as in the first experiments (of the order of 6), the
the image is equal to one wavelength. This is the size of an image provided by a perfect classical two-dimensional lens,
of which is much greater than its distance to the point source. Better resolution could be obtained, provided that tech
means allow one to elaborate left-handed materials with larger values ofλ0/d . In that case, a part of the evanescent part of
incident field will contribute to the image formation. Thus, the smaller the period, the better the resolution. It is intere
compare the resolution of superlenses made of metamaterials with that of classical optical lenses. For classical lenses,

Fig. 2. The different regions for the wavenumberα on thex-axis.

Fig. 2. Les différents domaines du nombre d’ondeα sur l’axe desx.
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waves cannot be amplified, in such a way that the only waves which contribute to the focusing process are the propaga
waves. From a mathematical point of view, this means that the best resolution is obtained by having a range of integ
Eq. (21) extending from−k0 to +k0, this case corresponding to an optical lens with an infinite diameter (y-propagative plane
waves region in Fig. 2). Obviously, the superlens using left-handed materials should have a better resolution than
lenses provided that the period of the metamaterial is small enough. An example of superlens with very high resolution
in [26].

4. Metamaterials in the visible and infrared regions

It is well known that in the visible and near infrared regions, the metals are lossy. Thus, it can be conjectured
losses of metallo-dielectric left-handed materials could cause problems in the focusing process. In this section, it is sh
numerical calculations that a dielectric photonic crystal can also be used to design a flat lens.

We consider a 2D dielectric photonic crystal (Fig. 3) made of 364 circular air galleries of diameter 0.588 inside a rec
dielectric bulk of size 27.9 by 5.4 and relative permittivityε = 12, forming a crystal of hexagonal symmetry, with distanced =
0.68 between two adjacent rods. It is illuminated by a line source (black cross in Fig. 3) parallel to the rods and loc
distance 2.7 above the top of the crystal. The wavelength isλ0 = 2.02. The field map shows the existence of two images of
line source, the first one inside the crystal, symmetrical to the line source with respect to the top of the crystal, the se
below the crystal, at a distance from the line source equal to two times the width of the crystal. This result obeys the co
of Section 2, at least for the locations of the images. On the other hand, it emerges that the light intensities of the im
much smaller than that on the line source. In order to explain this result, it must be noticed that the phenomenon of
refraction is not restricted to a material with relative permittivity and permeability close to−1. In fact, this phenomenon arise
as soon as these parameters are negative, the optical index being equal to−√

εµ. However, in that case, the transmission
energy on the boundaries of the crystal is no longer perfect, and the amplification of the evanescent waves disappears.

Fig. 3. Focusing of light by a dielectric photonic crystal. The map shows the modulus of the electric field.

Fig. 3. Focalisation de la lumière par un cristal photonique diélectrique. La carte donne le module du champ électrique.
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verified that the effective index of the photonic crystal is equal to−1 and we deduce that
√

εµ = 1. In Fig. 3, the width of the
image located below the bottom of the crystal is close toλ. Thus, this resolution corresponds exactly to the case whereλT = λ,
or in other words to the case where no evanescent wave is amplified, the focusing process being generated by the ph
of negative refraction for all the propagating waves. We actually try to determine the values of the effective permittiv
permeability.

5. Conclusion

In conclusion, a rigorous electromagnetic analysis of the field transmitted inside a slab of left-handed material illu
by a monochromatic field has allowed us to prove that this slab cannot act as a perfect lens, since a material with bo
permittivity and permeability equal to−1 is able to produce point sources in the transmitted field and thus violates
principles of electromagnetism. It must be noticed that this result was obtained from two approaches, using respec
analytic continuation of the field inside the slab and the behavior of the integral representing the field inside and below
However, considerations about the notion of effective media have shown that it is not correct to use the macroscop
of effective permittivity or effective permeability when evanescent waves propagate on the surface of a metamateri
transverse wavelength which approaches the period of the metamaterial. The limitation imposed by the heterogeneou
of the material appears to be crucial. From this conclusion, it turns out that metamaterials could have very interesting
properties, provided that the elementary cell of the metamaterial is small enough. Finally, it has been shown that
photonic crystals can provide an interesting solution for constructing left-handed materials in the visible and infrared
In order to know whether such a crystal can amplify the evanescent waves, we are actually trying to determine its pe
and permeability from theoretical and numerical approaches.
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