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We demonstrate the possibility to obtain perfect blazing both in Littrow and off-Littrow mountings using dif-
fractive systems consisting of a plane metallic substrate and dielectric structures that can support cavity
modes. The resonances are located at a relatively large distance between the metal and the dielectric structure,
a condition that prevents the resonance increase of absorption. The high efficiency can be obtained in trans-
verse electric or transverse magnetic polarization and at high incident angles. When cylindrical rods with cir-
cular cross-sections are used, the so-called whispering gallery modes can be used to provide the resonances,
necessary for the blazing. © 2010 Optical Society of America

OCIS codes: 050.0050, 230.1950, 050.5745.

1. INTRODUCTION

It is well known that resonant phenomena play an impor-
tant role in optics (and in nature, in general). In particu-
lar, Bloch modes in periodic (or almost periodic) systems
can create forbidden gaps for the corresponding waves.
Typical examples are the electronic forbidden gaps in
crystal structures and the photonic bandgaps in photonic
crystals. Most research dedicated to photonic crystals con-
siders subwavelength cells that do not create diffracted
propagating waves. However, periodic structures known
as diffraction gratings were widely studied and used in
optics and optical engineering long before the term photo-
nic crystal emerged.

While it is thought that the first use of diffraction grat-
ings was described by Young [1], it is not well known that
the first recorded observation of light diffraction by a pe-
riodic structure (nowadays known as a grating having
two-dimensional periodicity) was made by Francis Hop-
kinson, who was George Washington’s first Secretary of
the Navy and one of the signers of the Declaration of In-
dependence. In 1785 he observed a phenomenon of mul-
tiple images created when the light of a distant street
lamp passed through a fine French silk handkerchief, a
discovery explained and used by his friend the astrono-
mer Rittenhouse [2]. An interested reader can find a sum-
mary of the fascinating history of diffraction grating stud-
ies in [3].

Another fact that is generally ignored is the possibility
to use the nowadays widely studied photonic bandgaps in
order to create high-efficiency diffraction gratings. The
idea is simple: if the propagation of light is forbidden in
all but one direction, and if this direction is chosen to oc-
cur in a propagating non-specular diffraction order, it will
bring all the incident light, thus having 100% diffraction
efficiency [4,5]. If the gap is forbidden for unpolarized
light, it can be used to create perfect blazing for arbitrary
polarization [5].
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About 25 years ago we showed that a simple periodic
structure with one-dimensional periodicity capable of
supporting some kind of electromagnetic resonances can
have 100% reflectivity close to the resonance, even if it is
otherwise almost transparent. At that time we used the
excitation of guided modes in corrugated dielectric
waveguides [6], which allowed for the possibility to con-
struct narrowband filters working in reflection. However,
for quite a long time, their applications have been limited
by their resonant nature—the narrower the spectral
band, the tighter the tolerance of the collimation of the
light beam. It took more than 10 years and the knowledge
of bandgap properties to increase the angular tolerances
by another interaction (between counter-propagating
modes [7]) in order to pass from theory to applications.

Another possibility of reducing the angular dependence
of the reflectivity maximum is to use resonances that are
less sensitive angularly, for example, cavity resonances.
Periodical arrangement of optical fibers with subwave-
length periods can be characterized by narrow spectral
lines in reflection, while keeping the angular resonances
reasonable for practical use [8]. The idea is to use the so-
called whispering gallery modes, discovered by Rayleigh
in acoustics [9,10]. They represent waves propagating at
the oval (circular, in particular) surface of a cylindrical ob-
ject and confined inside by an almost total internal reflec-
tion. There are many papers devoted to whispering modes
(WsM) in optical fibers, although much less than in dielec-
tric spheres. Initially, the interest was motivated by bend-
ing and coupling losses in fibers [11-18]. More recently,
the use of WsM for guiding of light has been proposed
[19-21]. Although the WsM are lossy (radiative), they can
guide light along a long chain of aligned fibers [22], be-
cause the losses are small.

The aim of this paper is to study the possibility of using
cavity resonances in order to create bandgaps that can be
used for constructing diffraction gratings presenting per-

© 2010 Optical Society of America



Popov et al.

fect blazing in a single non-specular diffracted order.
First, we use the WsM in fibers. Based on that analysis,
we then study the cavity modes in rectangular structures
that can be assembled much easier than the set of equi-
distant fibers.

The calculations in this paper have been obtained using
three different rigorous electromagnetic methods. The
first method called scattering matrix method is specific to
finite-number line of cylinders [23] and is used for the cal-
culations of poles of the modes of single cylinders. Most of
the calculations for the periodic infinite set of cylinders
with or without a substrate, as well as later for the lamel-
lar gratings, are made using the differential method [24].
In order to check the validity of the results, we used a
code based on the integral method [25].

2. WHISPERING GALLERY MODES, TOTAL
LIGHT REFLECTION, AND PERFECT
BLAZING

Let us consider an infinite set (period d=1 pum) of circular
fibers with an optical index of 3.45 at wavelength \
=1.55 um, suspended in air (see the inset of Fig. 1) and
illuminated in transverse electric (TE, electric field vector
parallel to the fiber axis) polarization at normal inci-
dence. Figure 1 presents the dependence of the reflectiv-
ity as a function of the cylinder radius r. As can be ob-
served, close to certain radii, there are regions with 100%
reflectivity. We shall see that these values of the radius
correspond to excitation of gallery modes inside the di-
electric cylinders. These modes present electromagnetic
resonances characterized by poles of the scattering ma-
trix. Assuming symmetry properties (which is the case
here), one can expect reading 100% maxima in the reflec-
tance and transmittance of the system [6], which explains
why a system with a relatively low optical density (for ex-
ample, cylinder diameter over the period ratio of 0.25 for
the first maximum) can reflect 100% of the incident light.

The map of the amplitude of the electric field A within
a single period is presented in Fig. 2 for four values of r,
corresponding to the maxima in Fig. 1. For a lossless
structure and 100% reflection, it is possible to demon-
strate that the electric field E can be represented in the
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Fig. 1. Solid curve: reflectivity of a set of dielectric circular cyl-
inders (shown in the inset) having period d=1 um with refrac-
tive index of 3.45 at wavelength of 1.55 um, illuminated nor-
mally in TE polarization. Dashed curve: 20° incidence.
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Fig. 2. (Color online) Map of the electric field amplitude in a
single grating period (d=1 um), with the cylinder center posi-
tioned at x=0.5 um and y=1 um. The heavy circles represent the
cylinder-air interface. The radius for each figure is given inside.

form of a real amplitude A multiplied by a phase factor,
which does not depend on the position, E(x,y)
=A(x,y)exp(i¢). This fact can be used to represent the
map of A instead of the map of the modulus of E and thus
to preserve the information about the sign of A, as ob-
served in the figure.

The gallery modes are clearly visible, with positive- and
negative-value maxima of the field alternating along the
cylinder surface and the number of maxima (correspond-
ing to twice the mode number) growing with the cylinder
radius. It is interesting to notice that the field is strongly
localized near the interface, which means that there is
relatively weak coupling between the cylinders in the
chain. The higher the mode number, the sharper the
maxima, which in fact leads to stronger dependence on
the radius as seen in Fig. 1 when moving from left to
right.

The normal incidence determines that the field must be
symmetrical with respect to the vertical plane, which de-
termines the symmetry of the field maps. When we chose
another incident direction, the symmetry disappears and
some of the maxima get split in two, but until there is
only the specular order that can propagate, the conditions
described in [6] hold and the maxima in reflection can
reach 100%. When the angle of incidence exceeds 33.36°,
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Fig. 3. Schematic presentation of the system under study with
the notations.

the —1st diffracted order starts to propagate (with \/d
=1.55) so that there are four propagating diffracted or-
ders. The diffracted energy is redistributed unevenly
among them, and it is difficult to expect 100% efficiency in
one of them, because the grating is not blazed. However,
we can reduce the number of propagating orders by add-
ing a reflecting substrate as shown schematically in Fig.
3, where a dielectric layer is added to support the grating.

Let us at first consider the system already studied in
the previous figure, but used in —1st order Littrow
mount, i.e., as in Fig. 3 but with n;=1. Figure 4(a) pre-
sents the diffraction efficiencies of orders —1 and 0 in re-
flection as functions of r for d=1 um, H=1 um, A\
=1.55 um, angle of incidence of 50.8° (which corresponds
to Littrow conditions for order —1) in TE polarization,
and without the metallic substrate. The same depen-
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Fig. 4. Diffraction efficiency in the —1st and zeroth reflection
orders as a function of the rod radius of the structure presented
in Fig. 3 withd=1 um, H=1 pum, A\=1.55 um, n;=1, and angle of
incidence of 50.8° in TE polarization. (a) Without the substrate,
(b) with gold substrate.
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Fig. 5. (Color online) Same as in Fig. 2 but for gold substrate
and 50.8° angle of incidence.

dences when adding the substrate (complex refractive in-
dex 0.36+:10.4) are given in Fig. 4(b).

Without the reflecting lower surface, the efficiencies os-
cillate rapidly with the radius, more rapidly than in Fig.
1, but never reach 100% (but some of them exceed 99.6%),
which can be expected as discussed above. However, simi-
larly to Fig. 1, sharp oscillations appear close to the ra-
dius values given in Fig. 2, with the difference being
larger for smaller rods, when the gallery modes are less
confined and more strongly coupled in-between the rods,
and thus more dependent of the incident conditions. With
the metallic substrate, some of the maxima reach almost
100%. Due to the finite conductivity of the substrate,
there are some absorption losses, but when we are using
infinitely conducting substrate, the maxima reach 100%.
As can be expected, the field maps at the —1st order effi-
ciency maxima given in Fig. 5 are similar to those in Fig.
2 at slightly different radii, because the gallery mode con-
finement diminishes the coupling between the different
rods, and also between the rods and the conducting sub-
strate.

3. PHENOMENOLOGICAL APPROACH TO
THE EXPLANATION OF THE PERFECT
BLAZING

Let us consider a perfectly conducting substrate and a
grating suspended in air (n;=1; see Fig. 3) with both hori-
zontal (with respect to the Oyz plane) and vertical (with
respect to the Oxz plane) symmetries. Let us consider the
far-field region, where all the evanescent diffraction or-
ders have disappeared. In TE polarization, the electric
field above the grating can be represented as a sum of
three propagating waves: the incident wave with ampli-
tude a, the reflected wave with amplitude b, and the dif-
fracted wave with amplitude b6_;. We have added another
incident wave with amplitude a_;, necessary further on
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when considering the scattering (S) matrix of the system.
Now we assume that a_;=0 so that

E,=agexp(iax —iBy) + by exp(iax +iBy) + b_; exp(—iax

+ify), y=R, (1
where
a=kgsin 6;,
B= k- a?, (2)

with ko=27/\.

Assuming that the distance between the dielectric
structure and the metallic substrate is sufficiently large
to neglect the evanescent orders, there are only four plane
waves close to the metallic surface as shown in Fig. 6(a)
so that the electric field is written in the form

E,=cqexpliax —iBy) +c_1 exp(—iax —iBy) + ro exp(iax

+iBy)+r_jexp(-iax+iBy), y=-R. (3)
The electric field is null in the substrate so that

ro=—cq exp(2iH),
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Fig. 6. (a) Schematic representation of the dielectric grid and
propagating orders. (b) Diffraction efficiency in order —1 and
modulus of the determinant of the linear system, Eq. (10), as a
function of the distance H of the rod centers from the perfectly
conducting metallic surface of the system, presented in Fig. 3
with n;=1,d=0.802 34 um, r=0.308 25 um, A\=1.55 um, 6;=75°,
and Si refractive index n=3.45.
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r_1=-c_j exp(2ipH), (4)

where H=¢+r is the distance from the substrate to the
center of symmetry of the grating.

If we eliminate the substrate, the amplitudes rq and r_;
become null. The amplitudes of the field scattered by the
grating are proportional to the incident amplitude,

bo=Ray, b_1=D,ay,

co=Tap, c_1=Day, (5)

where R and T are the reflection and transmission coeffi-
cients, respectively, and D, and D, are the diffraction co-
efficients in reflection and in transmission, respectively,
without the substrate.

However, if the substrate is eliminated, the incident
wave can propagate upward, and we can consider the case
when the only incident wave is the wave with amplitude
ro. Due to the symmetry of the grating structure, it is easy
to see that in that case, if ay=r_;=0,

bo=Try, b_y=D;rq,

CO=R7'0, c_1=Drr0. (6)

Furthermore, if ag=ry=0 and the only incident wave is
the one with amplitude r_;, we get the relations

bo=Dyi_y, b1=Tr,

CO=Drr—l’ C_1 =Rr_1. (7)

Going back to the case with reflecting substrate, there are
three waves incident on the dielectric grid so that

Co =Rr0 +D,J‘_1 + Tao,
c_;=D,ro+Rr_j; + D,a,, (8)
bo = Tro +Dtr_1 +Ra0,

b_lthr0+Tr_1+Drao. (9)

Combining Egs. (4) and (8) produces a linear system of
two equations for ry and r_;, with a determinant A equal
to

A =[exp(- 2iBH) - R]* - D?, (10)

with the following solutions:

ro={D,D,~ TIR + expl- 2 BH 1}

r_1={D,T - D,[R + exp(— ZiﬁH)]}%. (11)

These formulas permit us immediately to obtain the am-
plitudes scattered in the cladding by using Eq. (9).

Let us consider the following set of parameters with all
lengths in micrometers: d=0.802 34, r=0.308 25, A=1.55,
0;=75°, and Si refractive index n=3.45. The numerical
values of the different coefficients without substrate, ob-
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tained using the rigorous electromagnetic theory that
takes into account the evanescent waves, are equal to

D,=0.413 76 exp(i20.62°), R =0.712 18 exp(i137.85°),

D,=0.455 74 exp(124.82°), T =0.336 90 exp(-:3.81°).

12)

Figure 6(b) presents the diffracted amplitude as a func-
tion of H, calculated either by using Eqgs. (9)—(12) with \
=1.55, 6;=75° or with the rigorous electromagnetic mod-
eling that takes into account the evanescent diffracted or-
ders. There is practically no difference between the two
approaches, which is not surprising if the distance be-
tween the grating and the reflecting surface is sufficiently
large so that the evanescent waves created at the dielec-
tric grid do not reach the metallic substrate.

It is necessary to underline that the results presented
in Fig. 6 enable perfect blazing close to grazing incidence
(75°), which cannot easily be obtained using other tech-
niques. In Section 5 we will go back to that question with
more realistic structures than in these theoretical consid-
erations.

We observe in Fig. 6 several features: wide maxima and
sharp anomalies. They appear periodically as functions of
H, which is natural bearing in mind that the results de-
pend on exp(-2iBH) only. The sharp anomalies are due to
the Fabry—Perot resonances, appearing when A is equal
to zero, also presented in the figure. The wide maxima
can be interpreted by an interference effect between dif-
ferent contributions in the right-hand-sides of Egs. (9).
This interference becomes destructive into order 0 leading
to blazing in order —1 (maxima in the figure) or destruc-
tive in order —1 (minima in the figure), enhancing the re-
flection.

However, this interpretation does not answer the ques-
tion to know why the blazing becomes perfect, i.e., why
the interference between the three contributions to b, and
b_; in Egs. (9) can completely eliminate the specular re-
flection. In order to answer that question, we present an
analysis of the properties of the scattering matrix of the
system, including both the grating structure and the per-
fectly conducting substrate. In that case we can consider a
square matrix of size 2, which is easy to analyze. In order
to introduce the scattering (S) matrix, we consider a sec-
ond wave incident on the cladding in a symmetrical direc-
tion as shown in Fig. 6(a) with a dashed arrow. Let us re-
turn to the field representation far above the grating
structure [Eq. (1)], assuming two incident and two dif-
fracted propagating waves,

E,=aqexp(iax —iBy) +a_q exp(—iax —iBy) + by exp(iax
+iBy) +b_q exp(—iax +iBy), (13)

By definition, the S matrix links the diffracted and the in-
cident amplitudes,

b S So_ a
( 0>=< 0,0 0,1>( 0>. "
by S_10 S_1-1/\a

The case of an electromagnetic resonance is characterized
by a pole o of the scattering matrix. A guided wave is a
typical example, because a pole means that there could be
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diffracted waves without any incident one, as it follows
from Eq. (14). Usually, the pole is a pole of the coefficients
of the scattering matrix, except if there is no coupling be-
tween different diffracted orders. Let us consider the re-
flection from a into by. If there is a single pole of S o (ex-
istence of guided or surface wave or cavity mode), the
reflectivity contains two contributions:

r

Sool@) =R, , + Py

(15)

The first one, R, ., is non-resonant and the second one is
resonant, with a slowly varying coefficient C,. In fact,
these are the first two terms in the Laurent series of S
as a function of «. The two terms interfere, which can in-
crease or decrease the reflection. By combining the two
terms, we obtain another expression,

a-dpg

Soo(@) = Ryp ——2,
0,0(a’) n.r. oo

r

o= o - (16)

B

n.r.

Thus S( o must have a zero, accompanying the pole. This
can be explained by the disappearance of the resonant
term if the grating strength is zero so that no coupling is
possible between the incident wave and the resonance.
When the coupling C, disappears, the zero coincides with
the pole and only the non-resonant contribution remains
in reflection.

In general, the pole is complex, because otherwise the
reflection would tend to infinity for real angle of incidence
and wavelength corresponding to the pole value. The zero
is also complex, but for some set of optogeometrical pa-
rameters, it can become real. In that case, if « is equal to
a0, S0,0=0, the reflection vanishes and all the non-
absorbed light goes into the diffracted order.

4. FEASIBLE STRUCTURES WITH CIRCULAR
RODS

Let us now study more realistic structures that can be
more easily fabricated than the chain of fibers suspended
in air. If we consider cylindrical rods, in order to position
them in equidistant order preserving some mutual dis-
tance, there is a possibility to prepare beds in the under-
lying dielectric layer (Fig. 3) by photolithographic technol-
ogy and chemical or ion-beam etching, in order to obtain
structures, presented schematically in Figs. 7(a) and 7(b).
We can expect that if the contrast of the refractive index
between the rods and the underlying dielectric is kept suf-
ficiently high, there will be gallery modes. Indeed, Fig.
8(a) presents the efficiency in order —1 for a structure
given in Fig. 7(a) with n1=1.5, with the other parameters
being the same as in Fig. 5. The efficiency exhibits a be-
havior similar to the case with n;=1. This is not surpris-
ing, as long as the gallery modes have similar field maps,
which is the case at least for radius values presented in
Fig. 8(b), when compared with Fig. 5.

Anyway, several differences between the cases ni=1
and 1.5 require special attention in view of the next
analysis of rectangular rod diffraction. First, larger rods
lead to stronger absorption losses [the dashed curve in
Fig. 8(a) presents the total non-absorbed energyl] due to
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Fig. 7. Schematic presentation of different grating structures.

the stronger coupling between the gallery modes and the
substrate through the dielectric layer that now is denser
optically. Second, the field behavior in this layer changes
[Fig. 8(b)]; it becomes stronger inside the dielectric layer,
which is again expected when its optical index is higher.

5. CAVITY RESONANCES INSIDE
RECTANGULAR RODS

Circular rods have the advantage of supporting gallery
modes (although they are not whispering in the acoustic
sense as in the initial study of Rayleigh [9,10]), but their
fabrication with tolerances of the radius not exceeding a
few nanometers is beyond the limit of the recent technol-
ogy. Probably more important is the difficulty to position
them equidistantly inside the prefabricated beds as
sketched in Figs. 7(a) and 7(b) that will cause perturba-
tions in the periodicity due to the variation of radii that
will reduce the grating resolution and increase scatter
and diffusion [3].

Much better developed is photolithography using pre-
fabricated masks for the following wet or dry chemical or
ion-beam etching that finishes with features having pro-
files close to lamellar or trapezoidal profile with steep fac-
ets. As long as these structures can have electromagnetic
resonances leading to pole(s) and zeros of the components
of the scattering matrix S, we can expect perfect blazing
in Littrow mount (backscattering configuration), follow-
ing the conclusions of Section 3. Figure 9(a) gives the ef-
ficiency in the —1st order for the system sketched in Fig.
7(c) as a function of the rod height for two different
widths and the following parameters: d=1 um, A
=1.55 um, 6;=50.8°, and n;=1.5. The substrate is gold
with a refractive index equal to 0.36+:10.4, the rod index
is 3.45, and the rod center is at height H(=t+h/2)=1 um
from the substrate. The solid curve corresponds to
¢=0.7 um (rod width of 0.3 um); the dashed curve to
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Fig. 8. (Color online) (a) Efficiency in order —1 and the sum of
orders —1 and 0 for a grating with n,=1.5 as given in Fig. 7(a)
with 2=0.010 um and other parameters as in Fig. 5. (b) Electric
field map for two different radii and the other parameters de-
scribed in (a).

¢=0.3 um. As can be expected, the wider rods show
greater number of resonances than the narrower ones.

Similar dielectric lamellar gratings have been proposed
for different purposes. 25 years ago Yokomori showed the
possibility to obtain perfect blazing in transmission [26].
More recently, such systems were used for beam-splitting
in laser cavity [27]. Perfect blazing in reflection was ob-
tained in [28], which was explained by the authors with
the excitation of a leaky wave inside the dielectric system.
We are more convinced to conclude that in our case it is
not necessary to introduce leaky waves, because the inter-
ference between the propagating orders is sufficient, as
shown in Section 3. Moreover, a blazing in reflection simi-
lar to the one observed in Fig. 1 is observed in normal in-
cidence on dielectric structures having rectangular cross-
sections and resulting either from the excitation of leaky
guided modes or from purely propagating waves [29-33].

As an additional argument to confirm the role of the
propagating waves in our case, the dependence of the ef-
ficiency on the non-corrugated layer thickness shows a pe-
riodic variation [Fig. 9(b)] typical of Fabry—Perot reso-
nances obtained with propagating waves. It is sufficient
to have electromagnetic resonances in order to obtain per-
fect blazing, as discussed in Section 3.
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Fig. 9. (a) Diffraction efficiency in the —1st order for the system
sketched in Fig. 7(c) as a function of the rod height & for two dif-
ferent widths, d=1 um, N\=1.55 um, 6;=50.8°, n,=1.5, substrate
is gold, rod index is 3.45, and the rod center is kept at a constant
height H=t+h/2 of 1 um from the substrate. The solid curve is
for ¢=0.7 um (rod width of 0.3 um); the dashed curve is for ¢
=0.3 um. (b) The same as in (a) but as a function of the distance
H between the rod center and the metallic substrate for almost
square rod with width of 0.3 um (¢=0.7 um) and A=0.274 um.
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Figure 10 shows the electric field maps corresponding
to the first maximum in Fig. 9(a) with ¢=0.7 um and &
=0.274 um, with and without the metallic substrate. In
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both cases there is clearly visible field enhancement in-
side the high-index rods, although it is lower than in the
case of circular rods. With the metallic substrate, we ob-
serve maxima in the lower layer due to the interference
between the four waves that propagate inside, while with-
out the reflecting substrate there is an interference pat-
tern due to the two diffracted orders in transmission: the
zeroth one propagating to the right with an efficiency of
33% and the —1st one propagating to the left with an ef-
ficiency of 50%

The importance of these effects for practical application
appears even more clearly when realizing that the reso-
nances responsible for the high efficiency are located far
from the metallic surface and that the interaction be-
tween the diffractive system and the metal happens
mainly through propagating waves, which prevents the
resonance increase of absorption losses. Another conse-
quence of the general conclusions of Section 3 is that the
perfect blazing can be expected whatever the incident
angle and the polarization may be. We have already pre-
sented in Section 3 an example with a fiber grating work-
ing in grazing incidence (75°) and showing perfect blazing
in TE polarization, a property that has been limited to dif-
fractive echelles. Figure 11 presents the diffraction effi-
ciency for a rectangular rod grating as a function of the
bump height A for two mountings, different from the
mounting in Fig. 9. Littrow mount with incident and dif-
fracted angles equal to 75° corresponds to Fig. 11(a) that
demonstrates the possibility to obtain perfect blazing
(vanishing specular reflection) in TE and transverse mag-
netic (TM) polarizations. Another interesting mount with
grazing incidence but diffraction at a smaller angle can be
used for beam expanding, and it is almost impossible with
known gratings to obtain a high efficiency. Figure 11(b)
demonstrates this possibility for both polarizations. In
fact, it is possible to generalize the considerations of Sec-
tion 3 to non-Littrow mount and to obtain the same con-
clusions that the zeros of the scattering matrix compo-

0.0 0.2 0.4 0.6 0.8 1.0

(b) X (um)

(Color online) Map of |E| in the case with a metallic gold substrate (on the left) or with a substrate having the same index as

the lower layer (on the right). The system is sketched in Fig. 7(c) with d=1 um, ¢=0.7 um, ~=0.274 pum, refractive index of the rod is
3.45, n;=1.5,¢t=0.863 um, A=1.55 um, and 6;=50.8°. The heavy lines present the boundaries of the different media.
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Fig. 11. (a) Diffraction efficiency in the —1st order in grazing
Littrow mount for the system sketched in Fig. 7(c) as a function
of the rod height 2, d=0.802 34 um, ¢=0.7 um, A=1.55 um, 6;
=75° n;=1.5, substrate is gold, rod index is 3.45, and the rod
center is kept at a constant height H=¢+h/2 of 1 um from the
substrate. The solid curve is for TE polarization; the dashed
curve is for TM polarization. (b) The same as in (a), but with pe-
riod d=1 um so that the diffraction direction is at 35°.

o
o

(b)

nents are real in order to explain the perfect blazed
observed in Fig. 11(b).

6. CONCLUSIONS

Combining cavity or whispering gallery mode resonances
and interference effects between a grating structure and a
plane metallic substrate can lead to perfect blazing in Lit-
trow or off-Littrow mount, and also close to grazing inci-
dence even if the grating is not blazed. The fact that the
electromagnetic field enhancement appears far from the
metal surface reduces significantly the absorption losses,
and thus the absolute diffraction efficiency can exceed
99%.
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