
1
I
t
l
c
T
c
c
s
p
a
o
n

i
t
r
t
k
t
d
t
l
d
m
m
i

t
o
i
a
c
b
e
l
p

1584 J. Opt. Soc. Am. A/Vol. 27, No. 7 /July 2010 Popov et al.
Whispering gallery modes and other cavity modes
for perfect backscattering and blazing
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We demonstrate the possibility to obtain perfect blazing both in Littrow and off-Littrow mountings using dif-
fractive systems consisting of a plane metallic substrate and dielectric structures that can support cavity
modes. The resonances are located at a relatively large distance between the metal and the dielectric structure,
a condition that prevents the resonance increase of absorption. The high efficiency can be obtained in trans-
verse electric or transverse magnetic polarization and at high incident angles. When cylindrical rods with cir-
cular cross-sections are used, the so-called whispering gallery modes can be used to provide the resonances,
necessary for the blazing. © 2010 Optical Society of America

OCIS codes: 050.0050, 230.1950, 050.5745.
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. INTRODUCTION
t is well known that resonant phenomena play an impor-
ant role in optics (and in nature, in general). In particu-
ar, Bloch modes in periodic (or almost periodic) systems
an create forbidden gaps for the corresponding waves.
ypical examples are the electronic forbidden gaps in
rystal structures and the photonic bandgaps in photonic
rystals. Most research dedicated to photonic crystals con-
iders subwavelength cells that do not create diffracted
ropagating waves. However, periodic structures known
s diffraction gratings were widely studied and used in
ptics and optical engineering long before the term photo-
ic crystal emerged.
While it is thought that the first use of diffraction grat-

ngs was described by Young [1], it is not well known that
he first recorded observation of light diffraction by a pe-
iodic structure (nowadays known as a grating having
wo-dimensional periodicity) was made by Francis Hop-
inson, who was George Washington’s first Secretary of
he Navy and one of the signers of the Declaration of In-
ependence. In 1785 he observed a phenomenon of mul-
iple images created when the light of a distant street
amp passed through a fine French silk handkerchief, a
iscovery explained and used by his friend the astrono-
er Rittenhouse [2]. An interested reader can find a sum-
ary of the fascinating history of diffraction grating stud-

es in [3].
Another fact that is generally ignored is the possibility

o use the nowadays widely studied photonic bandgaps in
rder to create high-efficiency diffraction gratings. The
dea is simple: if the propagation of light is forbidden in
ll but one direction, and if this direction is chosen to oc-
ur in a propagating non-specular diffraction order, it will
ring all the incident light, thus having 100% diffraction
fficiency [4,5]. If the gap is forbidden for unpolarized
ight, it can be used to create perfect blazing for arbitrary
olarization [5].
1084-7529/10/071584-9/$15.00 © 2
About 25 years ago we showed that a simple periodic
tructure with one-dimensional periodicity capable of
upporting some kind of electromagnetic resonances can
ave 100% reflectivity close to the resonance, even if it is
therwise almost transparent. At that time we used the
xcitation of guided modes in corrugated dielectric
aveguides [6], which allowed for the possibility to con-

truct narrowband filters working in reflection. However,
or quite a long time, their applications have been limited
y their resonant nature—the narrower the spectral
and, the tighter the tolerance of the collimation of the
ight beam. It took more than 10 years and the knowledge
f bandgap properties to increase the angular tolerances
y another interaction (between counter-propagating
odes [7]) in order to pass from theory to applications.
Another possibility of reducing the angular dependence

f the reflectivity maximum is to use resonances that are
ess sensitive angularly, for example, cavity resonances.
eriodical arrangement of optical fibers with subwave-

ength periods can be characterized by narrow spectral
ines in reflection, while keeping the angular resonances
easonable for practical use [8]. The idea is to use the so-
alled whispering gallery modes, discovered by Rayleigh
n acoustics [9,10]. They represent waves propagating at
he oval (circular, in particular) surface of a cylindrical ob-
ect and confined inside by an almost total internal reflec-
ion. There are many papers devoted to whispering modes
WsM) in optical fibers, although much less than in dielec-
ric spheres. Initially, the interest was motivated by bend-
ng and coupling losses in fibers [11–18]. More recently,
he use of WsM for guiding of light has been proposed
19–21]. Although the WsM are lossy (radiative), they can
uide light along a long chain of aligned fibers [22], be-
ause the losses are small.

The aim of this paper is to study the possibility of using
avity resonances in order to create bandgaps that can be
sed for constructing diffraction gratings presenting per-
010 Optical Society of America
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ect blazing in a single non-specular diffracted order.
irst, we use the WsM in fibers. Based on that analysis,
e then study the cavity modes in rectangular structures

hat can be assembled much easier than the set of equi-
istant fibers.
The calculations in this paper have been obtained using

hree different rigorous electromagnetic methods. The
rst method called scattering matrix method is specific to
nite-number line of cylinders [23] and is used for the cal-
ulations of poles of the modes of single cylinders. Most of
he calculations for the periodic infinite set of cylinders
ith or without a substrate, as well as later for the lamel-

ar gratings, are made using the differential method [24].
n order to check the validity of the results, we used a
ode based on the integral method [25].

. WHISPERING GALLERY MODES, TOTAL
IGHT REFLECTION, AND PERFECT
LAZING
et us consider an infinite set (period d=1 �m) of circular
bers with an optical index of 3.45 at wavelength �
1.55 �m, suspended in air (see the inset of Fig. 1) and

lluminated in transverse electric (TE, electric field vector
arallel to the fiber axis) polarization at normal inci-
ence. Figure 1 presents the dependence of the reflectiv-
ty as a function of the cylinder radius r. As can be ob-
erved, close to certain radii, there are regions with 100%
eflectivity. We shall see that these values of the radius
orrespond to excitation of gallery modes inside the di-
lectric cylinders. These modes present electromagnetic
esonances characterized by poles of the scattering ma-
rix. Assuming symmetry properties (which is the case
ere), one can expect reading 100% maxima in the reflec-
ance and transmittance of the system [6], which explains
hy a system with a relatively low optical density (for ex-
mple, cylinder diameter over the period ratio of 0.25 for
he first maximum) can reflect 100% of the incident light.

The map of the amplitude of the electric field A within
single period is presented in Fig. 2 for four values of r,

orresponding to the maxima in Fig. 1. For a lossless
tructure and 100% reflection, it is possible to demon-
trate that the electric field E can be represented in the
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ig. 1. Solid curve: reflectivity of a set of dielectric circular cyl-
nders (shown in the inset) having period d=1 �m with refrac-
ive index of 3.45 at wavelength of 1.55 �m, illuminated nor-
ally in TE polarization. Dashed curve: 20° incidence.
orm of a real amplitude A multiplied by a phase factor,
hich does not depend on the position, E�x ,y�
A�x ,y�exp�i��. This fact can be used to represent the
ap of A instead of the map of the modulus of E and thus

o preserve the information about the sign of A, as ob-
erved in the figure.

The gallery modes are clearly visible, with positive- and
egative-value maxima of the field alternating along the
ylinder surface and the number of maxima (correspond-
ng to twice the mode number) growing with the cylinder
adius. It is interesting to notice that the field is strongly
ocalized near the interface, which means that there is
elatively weak coupling between the cylinders in the
hain. The higher the mode number, the sharper the
axima, which in fact leads to stronger dependence on

he radius as seen in Fig. 1 when moving from left to
ight.

The normal incidence determines that the field must be
ymmetrical with respect to the vertical plane, which de-
ermines the symmetry of the field maps. When we chose
nother incident direction, the symmetry disappears and
ome of the maxima get split in two, but until there is
nly the specular order that can propagate, the conditions
escribed in [6] hold and the maxima in reflection can
each 100%. When the angle of incidence exceeds 33.36°,
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ig. 2. (Color online) Map of the electric field amplitude in a
ingle grating period �d=1 �m�, with the cylinder center posi-
ioned at x=0.5 �m and y=1 �m. The heavy circles represent the
ylinder-air interface. The radius for each figure is given inside.
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he �1st diffracted order starts to propagate (with � /d
1.55) so that there are four propagating diffracted or-
ers. The diffracted energy is redistributed unevenly
mong them, and it is difficult to expect 100% efficiency in
ne of them, because the grating is not blazed. However,
e can reduce the number of propagating orders by add-

ng a reflecting substrate as shown schematically in Fig.
, where a dielectric layer is added to support the grating.
Let us at first consider the system already studied in

he previous figure, but used in �1st order Littrow
ount, i.e., as in Fig. 3 but with n1=1. Figure 4(a) pre-

ents the diffraction efficiencies of orders �1 and 0 in re-
ection as functions of r for d=1 �m, H=1 �m, �
1.55 �m, angle of incidence of 50.8° (which corresponds

o Littrow conditions for order �1) in TE polarization,
nd without the metallic substrate. The same depen-

r
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ig. 3. Schematic presentation of the system under study with
he notations.
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ig. 4. Diffraction efficiency in the �1st and zeroth reflection
rders as a function of the rod radius of the structure presented
n Fig. 3 with d=1 �m, H=1 �m, �=1.55 �m, n1=1, and angle of
ncidence of 50.8° in TE polarization. (a) Without the substrate,
b) with gold substrate.
ences when adding the substrate (complex refractive in-
ex 0.36+ i10.4) are given in Fig. 4(b).
Without the reflecting lower surface, the efficiencies os-

illate rapidly with the radius, more rapidly than in Fig.
, but never reach 100% (but some of them exceed 99.6%),
hich can be expected as discussed above. However, simi-

arly to Fig. 1, sharp oscillations appear close to the ra-
ius values given in Fig. 2, with the difference being
arger for smaller rods, when the gallery modes are less
onfined and more strongly coupled in-between the rods,
nd thus more dependent of the incident conditions. With
he metallic substrate, some of the maxima reach almost
00%. Due to the finite conductivity of the substrate,
here are some absorption losses, but when we are using
nfinitely conducting substrate, the maxima reach 100%.
s can be expected, the field maps at the �1st order effi-
iency maxima given in Fig. 5 are similar to those in Fig.
at slightly different radii, because the gallery mode con-
nement diminishes the coupling between the different
ods, and also between the rods and the conducting sub-
trate.

. PHENOMENOLOGICAL APPROACH TO
HE EXPLANATION OF THE PERFECT
LAZING
et us consider a perfectly conducting substrate and a
rating suspended in air (n1=1; see Fig. 3) with both hori-
ontal (with respect to the Oyz plane) and vertical (with
espect to the Oxz plane) symmetries. Let us consider the
ar-field region, where all the evanescent diffraction or-
ers have disappeared. In TE polarization, the electric
eld above the grating can be represented as a sum of
hree propagating waves: the incident wave with ampli-
ude a0, the reflected wave with amplitude b0, and the dif-
racted wave with amplitude b−1. We have added another
ncident wave with amplitude a , necessary further on
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ig. 5. (Color online) Same as in Fig. 2 but for gold substrate
nd 50.8° angle of incidence.
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hen considering the scattering �S� matrix of the system.
ow we assume that a−1=0 so that

Ez = a0 exp�i�x − i�y� + b0 exp�i�x + i�y� + b−1 exp�− i�x

+ i�y�, y � R, �1�

here

� = k0 sin �i,

� = �k0
2 − �2, �2�

ith k0=2	 /�.
Assuming that the distance between the dielectric

tructure and the metallic substrate is sufficiently large
o neglect the evanescent orders, there are only four plane
aves close to the metallic surface as shown in Fig. 6(a)

o that the electric field is written in the form

Ez = c0 exp�i�x − i�y� + c−1 exp�− i�x − i�y� + r0 exp�i�x

+ i�y� + r−1 exp�− i�x + i�y�, y 
 − R. �3�

he electric field is null in the substrate so that

r0 = − c0 exp�2i�H�,
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ig. 6. (a) Schematic representation of the dielectric grid and
ropagating orders. (b) Diffraction efficiency in order �1 and
odulus of the determinant of the linear system, Eq. (10), as a

unction of the distance H of the rod centers from the perfectly
onducting metallic surface of the system, presented in Fig. 3
ith n1=1, d=0.802 34 �m, r=0.308 25 �m, �=1.55 �m, �i=75°,
nd Si refractive index n=3.45.
r−1 = − c−1 exp�2i�H�, �4�

here H= t+r is the distance from the substrate to the
enter of symmetry of the grating.

If we eliminate the substrate, the amplitudes r0 and r−1
ecome null. The amplitudes of the field scattered by the
rating are proportional to the incident amplitude,

b0 = Ra0, b−1 = Dra0,

c0 = Ta0, c−1 = Dta0, �5�

here R and T are the reflection and transmission coeffi-
ients, respectively, and Dr and Dt are the diffraction co-
fficients in reflection and in transmission, respectively,
ithout the substrate.
However, if the substrate is eliminated, the incident

ave can propagate upward, and we can consider the case
hen the only incident wave is the wave with amplitude

0. Due to the symmetry of the grating structure, it is easy
o see that in that case, if a0=r−1=0,

b0 = Tr0, b−1 = Dtr0,

c0 = Rr0, c−1 = Drr0. �6�

urthermore, if a0=r0=0 and the only incident wave is
he one with amplitude r−1, we get the relations

b0 = Dtr−1, b−1 = Tr−1,

c0 = Drr−1, c−1 = Rr−1. �7�

oing back to the case with reflecting substrate, there are
hree waves incident on the dielectric grid so that

c0 = Rr0 + Drr−1 + Ta0,

c−1 = Drr0 + Rr−1 + Dta0, �8�

b0 = Tr0 + Dtr−1 + Ra0,

b−1 = Dtr0 + Tr−1 + Dra0. �9�

ombining Eqs. (4) and (8) produces a linear system of
wo equations for r0 and r−1, with a determinant � equal
o

� = �exp�− 2i�H� − R�2 − Dr
2, �10�

ith the following solutions:

r0 = �DrDt − T�R + exp�− 2i�H���
a0

�
,

r−1 = �DrT − Dt�R + exp�− 2i�H���
a0

�
. �11�

hese formulas permit us immediately to obtain the am-
litudes scattered in the cladding by using Eq. (9).
Let us consider the following set of parameters with all

engths in micrometers: d=0.802 34, r=0.308 25, �=1.55,
i=75°, and Si refractive index n=3.45. The numerical
alues of the different coefficients without substrate, ob-
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ained using the rigorous electromagnetic theory that
akes into account the evanescent waves, are equal to

Dr = 0.413 76 exp�i20.62°�, R = 0.712 18 exp�i137.85°�,

Dt = 0.455 74 exp�i24.82°�, T = 0.336 90 exp�− i3.81°�.

�12�

igure 6(b) presents the diffracted amplitude as a func-
ion of H, calculated either by using Eqs. (9)–(12) with �
1.55, �i=75° or with the rigorous electromagnetic mod-
ling that takes into account the evanescent diffracted or-
ers. There is practically no difference between the two
pproaches, which is not surprising if the distance be-
ween the grating and the reflecting surface is sufficiently
arge so that the evanescent waves created at the dielec-
ric grid do not reach the metallic substrate.

It is necessary to underline that the results presented
n Fig. 6 enable perfect blazing close to grazing incidence
75°), which cannot easily be obtained using other tech-
iques. In Section 5 we will go back to that question with
ore realistic structures than in these theoretical consid-

rations.
We observe in Fig. 6 several features: wide maxima and

harp anomalies. They appear periodically as functions of
, which is natural bearing in mind that the results de-

end on exp�−2i�H� only. The sharp anomalies are due to
he Fabry–Perot resonances, appearing when � is equal
o zero, also presented in the figure. The wide maxima
an be interpreted by an interference effect between dif-
erent contributions in the right-hand-sides of Eqs. (9).
his interference becomes destructive into order 0 leading
o blazing in order �1 (maxima in the figure) or destruc-
ive in order �1 (minima in the figure), enhancing the re-
ection.
However, this interpretation does not answer the ques-

ion to know why the blazing becomes perfect, i.e., why
he interference between the three contributions to b0 and
−1 in Eqs. (9) can completely eliminate the specular re-
ection. In order to answer that question, we present an
nalysis of the properties of the scattering matrix of the
ystem, including both the grating structure and the per-
ectly conducting substrate. In that case we can consider a
quare matrix of size 2, which is easy to analyze. In order
o introduce the scattering �S� matrix, we consider a sec-
nd wave incident on the cladding in a symmetrical direc-
ion as shown in Fig. 6(a) with a dashed arrow. Let us re-
urn to the field representation far above the grating
tructure [Eq. (1)], assuming two incident and two dif-
racted propagating waves,

Ez = a0 exp�i�x − i�y� + a−1 exp�− i�x − i�y� + b0 exp�i�x

+ i�y� + b−1 exp�− i�x + i�y�, �13�

y definition, the S matrix links the diffracted and the in-
ident amplitudes,

� b0

b−1
	 = � S0,0 S0,−1

S−1,0 S−1,−1
	� a0

a−1
	 . �14�

he case of an electromagnetic resonance is characterized
y a pole �p of the scattering matrix. A guided wave is a
ypical example, because a pole means that there could be
iffracted waves without any incident one, as it follows
rom Eq. (14). Usually, the pole is a pole of the coefficients
f the scattering matrix, except if there is no coupling be-
ween different diffracted orders. Let us consider the re-
ection from a0 into b0. If there is a single pole of S0,0 (ex-

stence of guided or surface wave or cavity mode), the
eflectivity contains two contributions:

S0,0��� 
 Rn.r. +
Cr

� − �p . �15�

he first one, Rn.r., is non-resonant and the second one is
esonant, with a slowly varying coefficient Cr. In fact,
hese are the first two terms in the Laurent series of S0,0
s a function of �. The two terms interfere, which can in-
rease or decrease the reflection. By combining the two
erms, we obtain another expression,

S0,0��� 
 Rn.r.

� − �0,0
z

� − �p , �0,0
z = �p −

Cr

Rn.r.
. �16�

hus S0,0 must have a zero, accompanying the pole. This
an be explained by the disappearance of the resonant
erm if the grating strength is zero so that no coupling is
ossible between the incident wave and the resonance.
hen the coupling Cr disappears, the zero coincides with

he pole and only the non-resonant contribution remains
n reflection.

In general, the pole is complex, because otherwise the
eflection would tend to infinity for real angle of incidence
nd wavelength corresponding to the pole value. The zero
s also complex, but for some set of optogeometrical pa-
ameters, it can become real. In that case, if � is equal to

0,0
z , S0,0=0, the reflection vanishes and all the non-
bsorbed light goes into the diffracted order.

. FEASIBLE STRUCTURES WITH CIRCULAR
ODS
et us now study more realistic structures that can be
ore easily fabricated than the chain of fibers suspended

n air. If we consider cylindrical rods, in order to position
hem in equidistant order preserving some mutual dis-
ance, there is a possibility to prepare beds in the under-
ying dielectric layer (Fig. 3) by photolithographic technol-
gy and chemical or ion-beam etching, in order to obtain
tructures, presented schematically in Figs. 7(a) and 7(b).
e can expect that if the contrast of the refractive index

etween the rods and the underlying dielectric is kept suf-
ciently high, there will be gallery modes. Indeed, Fig.
(a) presents the efficiency in order �1 for a structure
iven in Fig. 7(a) with n1=1.5, with the other parameters
eing the same as in Fig. 5. The efficiency exhibits a be-
avior similar to the case with n1=1. This is not surpris-

ng, as long as the gallery modes have similar field maps,
hich is the case at least for radius values presented in
ig. 8(b), when compared with Fig. 5.
Anyway, several differences between the cases n1=1

nd 1.5 require special attention in view of the next
nalysis of rectangular rod diffraction. First, larger rods
ead to stronger absorption losses [the dashed curve in
ig. 8(a) presents the total non-absorbed energy] due to
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he stronger coupling between the gallery modes and the
ubstrate through the dielectric layer that now is denser
ptically. Second, the field behavior in this layer changes
Fig. 8(b)]; it becomes stronger inside the dielectric layer,
hich is again expected when its optical index is higher.

. CAVITY RESONANCES INSIDE
ECTANGULAR RODS
ircular rods have the advantage of supporting gallery
odes (although they are not whispering in the acoustic

ense as in the initial study of Rayleigh [9,10]), but their
abrication with tolerances of the radius not exceeding a
ew nanometers is beyond the limit of the recent technol-
gy. Probably more important is the difficulty to position
hem equidistantly inside the prefabricated beds as
ketched in Figs. 7(a) and 7(b) that will cause perturba-
ions in the periodicity due to the variation of radii that
ill reduce the grating resolution and increase scatter
nd diffusion [3].
Much better developed is photolithography using pre-

abricated masks for the following wet or dry chemical or
on-beam etching that finishes with features having pro-
les close to lamellar or trapezoidal profile with steep fac-
ts. As long as these structures can have electromagnetic
esonances leading to pole(s) and zeros of the components
f the scattering matrix S, we can expect perfect blazing
n Littrow mount (backscattering configuration), follow-
ng the conclusions of Section 3. Figure 9(a) gives the ef-
ciency in the �1st order for the system sketched in Fig.
(c) as a function of the rod height for two different
idths and the following parameters: d=1 �m, �
1.55 �m, �i=50.8°, and n1=1.5. The substrate is gold
ith a refractive index equal to 0.36+ i10.4, the rod index

s 3.45, and the rod center is at height H�=t+h /2�=1 �m
rom the substrate. The solid curve corresponds to
=0.7 �m (rod width of 0.3 �m); the dashed curve to

rd

t

Si

n1 h
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Fig. 7. Schematic presentation of different grating structures.
=0.3 �m. As can be expected, the wider rods show
reater number of resonances than the narrower ones.

Similar dielectric lamellar gratings have been proposed
or different purposes. 25 years ago Yokomori showed the
ossibility to obtain perfect blazing in transmission [26].
ore recently, such systems were used for beam-splitting

n laser cavity [27]. Perfect blazing in reflection was ob-
ained in [28], which was explained by the authors with
he excitation of a leaky wave inside the dielectric system.
e are more convinced to conclude that in our case it is

ot necessary to introduce leaky waves, because the inter-
erence between the propagating orders is sufficient, as
hown in Section 3. Moreover, a blazing in reflection simi-
ar to the one observed in Fig. 1 is observed in normal in-
idence on dielectric structures having rectangular cross-
ections and resulting either from the excitation of leaky
uided modes or from purely propagating waves [29–33].

As an additional argument to confirm the role of the
ropagating waves in our case, the dependence of the ef-
ciency on the non-corrugated layer thickness shows a pe-
iodic variation [Fig. 9(b)] typical of Fabry–Perot reso-
ances obtained with propagating waves. It is sufficient
o have electromagnetic resonances in order to obtain per-
ect blazing, as discussed in Section 3.
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Figure 10 shows the electric field maps corresponding
o the first maximum in Fig. 9(a) with c=0.7 �m and h
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ig. 9. (a) Diffraction efficiency in the �1st order for the system
ketched in Fig. 7(c) as a function of the rod height h for two dif-
erent widths, d=1 �m, �=1.55 �m, �i=50.8°, n1=1.5, substrate
s gold, rod index is 3.45, and the rod center is kept at a constant
eight H= t+h /2 of 1 �m from the substrate. The solid curve is
or c=0.7 �m (rod width of 0.3 �m); the dashed curve is for c
0.3 �m. (b) The same as in (a) but as a function of the distance
between the rod center and the metallic substrate for almost

quare rod with width of 0.3 �m �c=0.7 �m� and h=0.274 �m.
0.274 �m, with and without the metallic substrate. In

1 i
oth cases there is clearly visible field enhancement in-
ide the high-index rods, although it is lower than in the
ase of circular rods. With the metallic substrate, we ob-
erve maxima in the lower layer due to the interference
etween the four waves that propagate inside, while with-
ut the reflecting substrate there is an interference pat-
ern due to the two diffracted orders in transmission: the
eroth one propagating to the right with an efficiency of
3% and the �1st one propagating to the left with an ef-
ciency of 50%
The importance of these effects for practical application

ppears even more clearly when realizing that the reso-
ances responsible for the high efficiency are located far
rom the metallic surface and that the interaction be-
ween the diffractive system and the metal happens
ainly through propagating waves, which prevents the

esonance increase of absorption losses. Another conse-
uence of the general conclusions of Section 3 is that the
erfect blazing can be expected whatever the incident
ngle and the polarization may be. We have already pre-
ented in Section 3 an example with a fiber grating work-
ng in grazing incidence (75°) and showing perfect blazing
n TE polarization, a property that has been limited to dif-
ractive echelles. Figure 11 presents the diffraction effi-
iency for a rectangular rod grating as a function of the
ump height h for two mountings, different from the
ounting in Fig. 9. Littrow mount with incident and dif-

racted angles equal to 75° corresponds to Fig. 11(a) that
emonstrates the possibility to obtain perfect blazing
vanishing specular reflection) in TE and transverse mag-
etic (TM) polarizations. Another interesting mount with
razing incidence but diffraction at a smaller angle can be
sed for beam expanding, and it is almost impossible with
nown gratings to obtain a high efficiency. Figure 11(b)
emonstrates this possibility for both polarizations. In
act, it is possible to generalize the considerations of Sec-
ion 3 to non-Littrow mount and to obtain the same con-
lusions that the zeros of the scattering matrix compo-
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ents are real in order to explain the perfect blazed
bserved in Fig. 11(b).

. CONCLUSIONS
ombining cavity or whispering gallery mode resonances
nd interference effects between a grating structure and a
lane metallic substrate can lead to perfect blazing in Lit-
row or off-Littrow mount, and also close to grazing inci-
ence even if the grating is not blazed. The fact that the
lectromagnetic field enhancement appears far from the
etal surface reduces significantly the absorption losses,

nd thus the absolute diffraction efficiency can exceed
9%.
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