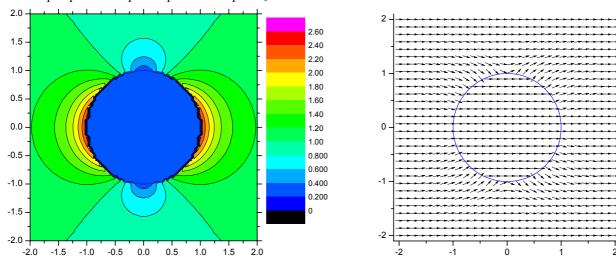

Complément illustré de l'exercice sur la polarisation d'une sphère diélectrique


Module et carte du champ électrostatique, pour une sphère de rayon R_0 , uniformément polarisée avec une polarisation $\vec{P}_e = P \vec{e}_x$. Pour les calculs, on a pris $R_0 = 1$, P = 1, et le champ a été multiplié par le coefficient $3\varepsilon_0$ pour être de module égal à 1 dans la sphère. On constate la discontinuité du champ, dont le module est égal à 2 sur l'axe des x au voisinage de la sphère.

Carte de champ pour un dipôle électrostatique de moment dipolaire $\vec{\mathcal{M}} = \mathcal{M} \vec{e}_x$:

Sphère diélectrique placée dans un champ électrostatique uniforme $\vec{E}_0 = E_0$ \vec{e}_x . Carte du module de \vec{E} et lignes de champ \vec{E} . Rayon de la sphère: $R_0 = 1$. Susceptibilité du diélectrique: $\chi = 10$. Pour des valeurs de χ plus raisonnables, les lignes de champ sont très peu perturbées par la sphère. On a pris $E_0 = 1$.

