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From scattering or impedance matrices to Bloch
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The dispersion relation of Bloch waves is derived from the properties of a single grating layer. A straightfor-
ward way to impose the Bloch condition leads to the calculation of the eigenvalues of the transfer matrix
through the single grating layer. Unfortunately, the transfer-matrix algorithm is known to be unstable as a
result of the growing evanescent waves. This problem appears again in the calculation of the eigenvalues,
making unusable the transfer matrix in numerous practical problems. We propose two different algorithms to
circumvent this problem. The first one takes advantage of scattering matrices, while the second one takes
advantage of impedance matrices. Numerical evidence of the efficiency of the algorithms is given. Disper-
sion diagrams of simple cubic and woodpile photonic crystals are obtained by using, respectively, the scattering
and impedance matrices. © 2002 Optical Society of America

OCIS codes: 050.1950, 260.2110.
1. INTRODUCTION
Photonic crystals are dielectric or metallic structures
whose dielectric permittivity varies periodically in space.

The most interesting property of photonic crystals is
their ability to shape the dispersion relation, and the
most famous consequence is the existence of bandgaps for
proper parameters of the crystal (permittivity, filling ra-
tio). The full bandgaps, i.e., the frequency intervals
where no electromagnetic wave can propagate in the pho-
tonic crystal whatever the polarization and the direction
of propagation, was the first motivation of earlier work.
The aim was to inhibit spontaneous emission responsible,
for example, for the laser threshold in laser diodes.

Increasingly, it appears that one key feature is the nu-
merical computation of the dispersion relation of the
Bloch modes, which gives synthetic information on the
propagation of the light in the crystal. Thus the calcula-
tion of the dispersion relation of Bloch modes has been
the subject of intensive research, and several methods
have emerged from this scientific agitation, such as the
plane-wave method,1,2 the transfer-matrix method,3 the
Korringa–Kohn–Rostoker method,4,5 and the multipole
method.6

Another approach is to interpret a photonic crystal as a
stack of identical periodic layers. This way has been in-
vestigated recently, for photonic crystals, by several
groups, including the authors of the present paper,7 Bot-
ten et al.,8 Modinos et al.,9 and Whittaker.10 As the pe-
riodic layers are nothing but gratings, we can profit from
the large amount of work in the electromagnetic theory of
gratings. Indeed, grating structures have been studied
theoretically since early in the 1960s.11 If the first appli-
cation is spectroscopy, it emerges that numerous devices
in modern optics require gratings: Grating couplers
were deeply studied for distributed-feedback lasers12 or
second-harmonic-generation enhancement.13 Many effi-
cient methods have been developed, such as integral,14
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differential,15,16 and modal methods,17–20 and are now
mature. There are strong points in favor of this ap-
proach: It can deal with dispersive and absorptive mate-
rials without any difficulties, requires no huge computa-
tional resources if the grating method used is a good one,
and is rapidly convergent and accurate.

In our previous paper,7 we give a simple interpretation
in terms of a grating transfer matrix, and we obtain the
dispersion relation from this matrix in combination with
the Bloch theorem. Unfortunately, this approach suffers
from numerical instabilities in some practical problems.
Botten et al. have proposed a formulation for two-
dimensional (2D) rectangular, centered rectangular, or
hexagonal crystals that, taking advantage of the up–
down symmetry of the crystal,8 does not suffer from nu-
merical instability. However, to our knowledge, no algo-
rithm has been proposed in the general, three-
dimensional (3D) case (where the up–down symmetry
does not exist) to deduce the dispersion relation from the
properties of a grating layer without any numerical insta-
bilities.

First, from the Bloch theorem and the transfer-matrix
definition, an expression for the dispersion relation is
given. Then the origin of the numerical instabilities is
sketched, and we propose our solutions. We propose two
algorithms to compute the dispersion relation. In the
first, we develop an eigenvalue problem from the imped-
ance, or R, matrix, while in the second the eigenvalue
problem uses the scattering, or S, matrix.21

The numerical efficiency of the algorithms is illustrated
with the actual structures of simple cubic and face-
centered-cubic woodpile photonic crystals fabricated by
Lin et al.22,23 It is shown that the R-matrix algorithm as-
sociated with a rigorous modal method17–20 allows us to
obtain a very accurate dispersion relation for the woodpile
structure with a computational burden close to that of 2D
structures. The simple cubic structure is studied by us-
2002 Optical Society of America
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ing the coupled waves or the Fourier modal method24

combined with the S-matrix algorithm. Then it is shown
that the computed dispersion relation fits the experimen-
tal results of Ref. 25 and the transmission curves. Thus
the discrepancy between the transmission curves and the
dispersion relation observed in Ref. 25 can be attributed
to the slow convergence of the plane-wave method26

rather than to a limited size effect.

2. BLOCH BOUNDARY CONDITION AND
GRATING LAYERS
We begin by defining appropriate notation.

A. Geometry
Let us consider a 3D photonic crystal with spatial periods
d1 , d2 , and d3 [Fig. 1(a)]. Note that this basis is not sup-
posed to be orthogonal. In the following, we use the co-
ordinate system associated with the basis (d1 , d2 , d3).
The unit cell V and the lattice L of this crystal are

V 5 $x 5 x1d1 1 x2d2 1 x3d3 P R3ux1 , x2 , x3 P @0,1#%,

L 5 $g 5 g1d1 1 g2d2 1 g3d3 P R3ug1 , g2 , g3 P Z%.
(1)

The volume of this unit cell is denoted by uVu. The vectors
of the basis of the dual lattice are

d1* 5 ~2p/uVu!d2 3 d3 ,

d2* 5 ~2p/uVu!d3 3 d1 ,

d3* 5 ~2p/uVu!d1 3 d2 . (2)

The permeability is assumed to be equal to that of
vacuum, m0 , and the permittivity e has the periodicity of
the lattice L:

;x P R3, ;g P L: e~x 1 g! 5 e~x!. (3)

Fig. 1. (a) 3D photonic crystal with spatial periods d1 , d2 , and
d3 , (b) grating layer extracted from this 3D crystal with spatial
periods d1 and d2 .
This photonic crystal can be seen as an infinite stack of
identical grating layers. Each of these grating layers is
2D periodic with spatial periods d1 and d2 and is deduced
from the adjacent one by a translation of 6d3 [Fig. 1(b)].

B. Electromagnetic Field
First, we consider the isolated grating layer located be-
tween the planes x3 5 0 and x3 5 1 (Fig. 2). The elec-
tromagnetic field is assumed to have the time-harmonic
dependence exp(2ivt). Because of the 2D periodicity of
the grating layer, we can perform the usual partial Bloch
reduction. In this case, the electromagnetic field, repre-
sented by its complex amplitude (E, H), satisfies the par-
tial, or 2D, Bloch boundary condition, known as the
pseudoperiodicity condition in grating theory. For all x
P R3 and for all n1 and n2 P Z, we have

F~x 1 n1d1 1 n2d2! 5 exp@ik • ~n1d1 1 n2d2!#F~x!,

(4)

where F 5 E, H and

k P V* 5 $k1d1* 1 k2d2* 1 k3d3* P R3uk1 , k2 , k3

P @21/2, 1/2#% (5)

is the Bloch wave vector in the unit cell of the dual lattice.
We denote by (Eu, Hu) and (Ed, Hd) the field at the

planes delimiting the grating layer (Fig. 2):

Fu~x1 , x2! 5 F~x1 , x2 , 1!,

Fd~x1 , x2! 5 F~x1 , x2 , 0!, (6)

where F 5 E, H. The partial Bloch boundary condition,
or pseudoperiodicity, allows us to develop the functions
Eu, Hu, Ed, and Hd by using the Fourier basis:

Fs~x1 , x2! 5 (
n1 ,n2PZ

Fn1 ,n2

s exp@i~k1 1 n1!x1#

3 exp@i~k2 1 n2!x2#, (7)

where, for all F 5 E, H and s 5 u, d,

Fn1 ,n2

s 5 F1,n1 ,n2

s d1 1 F2,n1 ,n2

s d2 1 F3,n1 ,n2

s d3 P C3.
(8)

We denote by Fs the infinite column vector defining the
tangential components F1

s and F2
s of the vectorial func-

tions Fs for all F 5 E, H and s 5 u, d:

Fs 5 S F1,n1 ,n2

s

F2,n1 ,n2

s D
n1 ,n2PZ

(9)

Fig. 2. Value of the electromagnetic field at the planes x3 5 0
and x3 5 1 delimiting the grating layer.
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Finally, as is well-known in grating theory, the numerical
resolution of Maxwell’s equations gives us a transfer-
matrix relationship between the tangential components of
the field on the upper and lower interfaces:

S Eu

Hu D 5 T~v, k1 , k2!S Ed

Hd D , (10)

where T(v, k1 , k2) is the transfer matrix for given val-
ues of v, k1 , and k2 .

C. Dispersion Relation
Now let us return to the 3D photonic crystal and link the
grating layer transfer matrix to the dispersion relation of
the 3D crystal. A Bloch mode in this 3D photonic crystal
satisfies the total, or 3D, Bloch condition. To fulfill the
total Bloch condition, we have to add a supplementary
condition to the previous one [Eq. (4)]. From Eqs. (6), (7),
and (9), we obtain the following for all x P R3 and for all
n3 P Z:

S Eu

Hu D 5 exp~ik • d3!S Ed

Hd D . (11)

From Eqs. (10) and (11), it appears that the total Bloch
condition is satisfied if the scalar exp(ik • d3) is an ei-
genvalue of the transfer matrix. The expression for the
dispersion relation is then

det@T~v, k1 , k2! 2 I exp~ik • d3!# 5 0, (12)

where I is the identity matrix.
Unfortunately, the numerical computation of the eigen-

values of the transfer matrix is unstable because of the
growing evanescent waves. These eigenvalues tend ex-
ponentially to infinity or zero when the size of the trun-
cated transfer matrix increases. So expression (12) for
the dispersion relation is, in numerous practical prob-
lems, unusable.

In Section 3, we propose stable algorithms to compute
these eigenvalues from scattering (or S) and impedance
(or R) matrices.

3. STABLE ALGORITHMS
One of the more significant recent advances in the elec-
tromagnetic theory of gratings was the formulation of
stable propagation algorithms.21,27,28 We can divide all
these algorithms into two categories: S- and R-matrix al-
gorithms.

First, we present the main idea of our stable algorithm.
Numerical instabilities are due to the behavior of the ei-
genvalues $lnun P N% of the T matrix. When the size of
the truncated T matrix increases, some of the eigenvalues
tend exponentially to infinity while others tend exponen-
tially to zero. Inverting the T matrix can solve the prob-
lem due to the growing eigenvalues, but the ones close to
zero cause the same growing behavior for the eigenvalues
of the matrix T21.

Hence we first add the identity matrix 6I to the T ma-
trix. This matrix (T 6 I) has the same eigenvectors as
those of T, and its eigenvalues are $ln 6 1un P N%. So
no eigenvalues of this new matrix (T 6 I) tend to zero.
Second, we consider the matrix (T 6 I)21. Again, this
new matrix @(T 6 I)21# has the same eigenvectors as
those above, and its eigenvalues are $(ln 6 1)21un
P N%. Now none of these eigenvalues tends to infinity.
So no numerical instabilities are expected. The disper-
sion relation (12) is equivalent to

det$@T~v, k1 , k2! 6 I#21 2 I@exp~ik • d3! 6 1#21% 5 0.
(13)

Note that the two possibilities linked to the 6 sign will
give the same result, except when there are eigenvalues
equal to 61. In this particular case, one of the two dis-
persion relations is well conditioned and allows us to get
the correct eigenvalues. In the very improbable case
where both 11 and 21 are eigenvalues of T, one can add
to T any matrix aI, where a is an arbitrary complex num-
ber. In our numerical experience, we have never encoun-
tered such circumstances.

The next step is to derive an expression for the matrix
(T 6 I)21 from the matrix R or S, paying attention to nu-
merical instabilities.

A. Stable Algorithm from Impedance (or R) Matrix
We denote by R the impedance matrix. This matrix links
the vectors Eu and Ed [Eq. (9)] to the vectors Hu and Hd

(Ref. 21):

S Eu

Ed D 5 R~v, k1 , k2!S Hu

Hd D 5 FR11 R12

R21 R22
G S Hu

Hd D , (14)

where R11 , R12 , R21 , and R22 are the four submatrices of
the matrix R. After tedious but straightforward calcula-
tion, we derive from Eqs. (10) and (14) the expression for
the matrix (T 6 I)21:

~T 6 I !21

5 F ~R22 7 R21!X ~R22 7 R21!XY~R22 7 R21!21R22

X 2X~R11 6 R21!
G ,

(15)

where

X 5 @~R12 2 R21! 6 ~R22 2 R11!#21,

Y 5 R12R22
21R21 2 R11 . (16)

B. Stable Algorithm from Scattering (or S) Matrix
The S matrix gives a relationship between incoming and
outgoing waves around the grating layer21 (Fig. 3). To
define this S matrix, we have to develop the electric field
above and below the grating layer on the plane-wave ba-
sis, which is convenient for separating incoming and out-

Fig. 3. Definition of the S matrix.
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going waves. For this purpose, we assume that the vec-
torial function E can be written as a Rayleigh series29:

For x3 . 1,

E~x! 5 (
n1 ,n2PZ

@En1 ,n2

u,1 exp~ikn1 ,n2

1
• x!

1 En1 ,n2

u,2 exp~ikn1 ,n2

2
• x!#

For x3 , 0,

E~x! 5 (
n1 ,n2PZ

@En1 ,n2

d,1 exp~ikn1 ,n2

1
• x!

1 En1 ,n2

d,2 exp~ikn1 ,n2

2
• x!# (17)

where, for all s 5 u, d,

En1 ,n2

s,6 5 E1,n1 ,n2

s,6 d1 1 E2,n1 ,n2

s,6 d2 1 E3,n1 ,n2

s,6 d3 P C3,

kn1 ,n2

6 5 ~k1 1 n1!d1* 1 ~k2 1 n2!d2* 6 k3,n1 ,n2
d3* ,

ukn1 ,n2

6 u 5 v/c, arg~k3,n1 ,n2
! P $0, p/2%. (18)

The series (17) suppose that the media above and below
the grating layer are homogeneous. Without loss of gen-
erality, we have assumed that this medium is the vacuum
(18). We denote by Es,6 the infinite column vector defin-
ing the tangential components E1

s,6 and E2
s,6 of the vec-

torial functions Es,6 for all s 5 u,d:

Es,6 5 S E1,n1 ,n2

s,6

E2,n1 ,n2

s,6 D
n1 ,n2PZ

. (19)

The S matrix links the vectors Eu,1 and Ed,2 [Eq. (19)] to
the vectors Eu,2 and Ed,1 (Ref. 21):

S Eu,1

Ed,2D 5 S~v, k1 , k2!S Eu,2

Ed,1D
5 FS11 S12

S21 S22
G S Eu,2

Ed,1D . (20)

Using the Rayleigh development [Eq. (17)], we define an-
other transfer matrix T̃:

S Eu,1

Eu,2D 5 T̃~v, k1 , k2!S Ed,1

Ed,2D . (21)

Since the matrix T̃ is linked with T by a change of basis,
these matrices are isomorphic and have the same eigen-
values. From Eqs. (20) and (21), the expression for the
matrix (T̃21 6 I)21 is

where I11 is the identity matrix and

X̃ 5 ~S21S11
21 6 S11

21 6 S21S11
21S12 7 S22 1 S11

21S12!21.
(23)

Note that we chose to use the matrix (T̃21 6 I)21 instead
of (T̃ 6 I)21 to obtain a simpler expression.

4. NUMERICAL RESULTS
In this section, we illustrate the algorithms (15) and (22)
with the actual structures of face-centered-cubic woodpile
and simple cubic photonic crystals. The structure pa-
rameters are chosen to fit the experimental realizations of
the Sandia National Laboratories.23,25 Both structures
are constructed by using advanced silicon processing with
a simple stacking scheme. They are promising, since
they possess a full photonic bandgap and the technology
allows the design of such structures at wavelengths in the
near-infrared region.

Before giving the numerical results, we present the
representation of the dispersion relation that we have
adopted. This representation consists in projecting the
unit cell of the dual lattice.9

Using the common symmetries of the two studied
structures, we reduce the unit cell (5) of the dual lattice to
the reduced unit cell (Fig. 4)

Vr* 5 $k 5 k1d1* 1 k2d2* 1 k3d3* P R3u

k1 P @0, 1/2#, k2 P @0, k1#, k3 P @21/2, 1/2#%.

(24)

With our numerical approach, we fix the values of the fre-
quency v and the two components k1 and k2 of the Bloch
wave vector k. The truncated matrix is N 3 N and has
N eigenvalues, which are computed by using the tech-
niques described in Section 3. Two cases can occur.
First, if there is no eigenvalue with modulus equal to 1,
Eq. (12) cannot be fulfilled with a real Bloch wave vector
k. It means that there is no propagative solution, which
is characteristic of a gap. Second, if there is at least one
eigenvalue with modulus equal to 1, there is at least one
propagative Bloch mode and its Bloch wave-vector compo-
nent k3 is given by Eq. (12). The representation that we
have adopted is the following: In the first case, we plot a
gray point (gap), and in the other case, we plot a white
point (propagative solution). Consequently, for each v,
we vary the parameters k1 and k2 in the reduced unit cell
projected onto the (k1 , k2) plane (represented by the
hatched triangle in Fig. 5). Finally, we restrict the scan
of the projected reduced unit cell to its boundary GXMG
(Fig. 5).

Even if this representation is simple, all the vertical
faces of the reduced unit cell Vr* (Fig. 4) are scanned.
Consequently, the projection of the most degenerated
points of the reduced unit cell Vr* are contained in the
boundary GXMG. Note that the diagrams obtained in

this way are different from the conventional ones, in
which each mode is represented by a point on a line.

Now we are ready to present our numerical examples.

A. Face-Centered-Cubic Woodpile Photonic Crystal
We consider here a structure realized experimentally by
Lin et al.22,23 and shown schematically in Fig. 6. This

~T̃21 6 I !21 5 FS11
21~I11 6 S12!X̃ 2S11

21~I11 6 S12!X̃S22~I11 6 S12!21

X̃ X̃~S21S11
21S12 2 S22 6 S11

21S12!
G , (22)
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woodpile photonic crystal is a stack of identical layers
consisting of a periodic array of silicon rods with a rect-
angular cross section. Two consecutive layers are per-
pendicular, and two consecutive parallel layers are
shifted by a half-period (Fig. 6). The resulting structure
is face-centered tetragonal, and in the special case where
d1,1 5 d2,2 5 A2d3,3 5 a/A2, it is face-centered cubic.
The relevant parameters of this structure are the index
ratio [equal to 3.6 (silicon and air)]; the filling factor
[equal to 0.28 (the ratio of the rod width to the horizontal
spatial period)], and the length a.

Fig. 4. Unit cell V* of the dual lattice and the reduced unit cell
Vr* (hatched volume).

Fig. 5. Projected reduced unit cell of the dual lattice (hatched
triangle) and its boundary GXMG.

Fig. 6. Schematic representation of the face-centered-cubic
woodpile photonic crystal. The horizontal spatial periods d1,1

and d2,2 are d1,1 5 d2,2 5 a/A2. The shifts d1 and d2 are equal
to a half-period: d1 5 d2 5 a/(2A2). The silicón rods are of
width w1 5 w2 5 0.28d1,1 5 0.28d2,2 and of height d3,3/2 5 a/4.
Figure 7 shows the representation of the dispersion re-
lation. We use in that case algorithm (15) based on the R
matrix. We obtain the R matrix of the grating layer
(which is made up of a stack of two orthogonal periodic
arrays of rods) from the rigorous modal method used in
grating theory17,18 and generalized for conical
mountings.19,20 The main advantage of this method is
that the permittivity e is strictly represented by a
piecewise-constant function and not represented by a
truncated Fourier series. A second advantage is that a
small number of basis functions can represent the electro-
magnetic field with good accuracy. These two points
make the convergence fast.

The dispersion relation in Fig. 7 shows that this crystal
presents a full photonic bandgap for

va/~2pc ! P @0.468 6 0.001, 0.569 6 0.001#. (25)

This result confirms the previous theoretical
estimations.10,23 The given precision results from the

Fig. 7. Representation of the dispersion relation of the face-
centered-cubic woodpile photonic crystal. Abscissa, projection of
the Bloch vector k onto GXMG; ordinate, normalized frequency.

Table 1. Upper and Lower Band Edges for
Different Values of the Number of Functions

Retained for the Computation

Number of
Functions

Upper
Band Edge

Lower
Band Edge

CPU Timea

(s)

5 3 5 0.5675 0.4649 0.11
7 3 7 0.5680 0.4672 0.77
9 3 9 0.5689 0.4687 3.6

11 3 11 0.5698 0.4669 14
13 3 13 0.5700 0.4681 57
15 3 15 0.5696 0.4678 171
17 3 17 0.5698 0.4681 469
19 3 19 0.5700 0.4676 908

a CPU times in seconds for a one-point computation on a Compaq ds20e
workstation (666-MHz Alpha processor).
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numerical study of the convergence of the values of the
bandgap edges. Table 1 shows the behavior of the value
of the band edges when the number of functions retained
for the computation increases. Note that the total size of
the eigenproblem is four times bigger than this number
because of the four components of the tangential field. It
is worth noting that algorithm (15) does not present any
numerical instabilities. From Table 1, it is found that
the number of 5 3 5 functions gives results with a preci-
sion better than 0.5% when compared with the final val-
ues. With this small number of functions, the CPU time
is only approximately 0.11 s for each fixed value of the
three parameters k1 , k2 , and v. For a complete disper-
sion relation as represented in Fig. 7 with 150 3 150
points, the CPU time needed is approximately 42 min
(close to the CPU time needed for 2D crystals).

B. Simple Cubic Photonic Crystal
Now we study the simple cubic structure realized experi-
mentally by Lin et al.25 Figure 8 shows the unit cell of
this crystal, composed of three identical square rods of
silicon along the orthonormal spatial periods d1 , d2 , and

Fig. 8. Unit cell of the simple cubic photonic crystal.

Fig. 9. Representation of the dispersion relation of the simple
cubic photonic crystal. Abscissa, projection of the Bloch vector k
onto GXMG; ordinate, normalized frequency.
d3 . The index ratio is again 3.6, and the filling factor is
equal to 19% (the width of the silicon rods is equal to 25%
of the cube edge length: w 5 0.25a).

Figure 9 shows the representation of the dispersion re-
lation. To illustrate the second algorithm [Eq. (22)], we
use in this section the S matrix. Our code uses the Fou-
rier modal method24 to obtain the S matrix. This formu-
lation takes care of the product of truncated Fourier se-
ries in order to improve the convergence.30 The
dispersion relation in Fig. 9 shows that this crystal pre-
sents a full photonic bandgap. Note that with our repre-
sentation the ‘‘GX ’’ path corresponding to the normal in-
cidence in Ref. 25 is concentrated on our G point. When
compared with Fig. 1 of Ref. 25, the band edges of the full
bandgap of Fig. 9 are shifted to higher frequencies. This
discrepancy may explain the difference between trans-
mission curve and dispersion relation in Ref. 25.

Figure 10 shows the transmission curve computed by
using the same Fourier modal method and the limits of
the gap for normal incidence (G point). Note that in the
projected unit cell of Fig. 5, the normal incidence

Fig. 10. Transmission through six identical grating layers for
normal incidence (G point). The dashed lines [va/(2pc)
5 0.273 and 0.426] are the limits of the gap corresponding to the
infinite crystal in normal incidence, deduced from Fig. 9.

Table 2. Upper Band Edge at the G Point (Normal
Incidence) for Different Values of the Number

of Functions Retained for the Computation

Number of
Functions

Upper
Band Edge

CPU Timea

(s)

5 3 5 0.4362 0.32
7 3 7 0.4281 2.3
9 3 9 0.4266 9.6

11 3 11 0.4268 33
13 3 13 0.4265 95

a CPU times in seconds for a one-point computation on a Compaq ds20e
workstation (666-MHz Alpha processor).
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(k1 5 k2 5 0) corresponds to the G point only, whereas in
the usual representation it corresponds to the GX line.
The agreement with the transmission curve (Fig. 4 of Ref.
25) computed by using the transfer-matrix method is ex-
cellent, as is that with our dispersion relation represented
in Fig. 9 (intersection of the gray region with the left ver-
tical axis). Thus it appears that the discrepancy between
theory and experiments in Ref. 25 is probably due to the
slow convergence of the plane-wave method.

Finally, Table 2 shows that the second algorithm [Eq.
(22)] is also stable and guarantees the precision of the
computed value of the upper band edge of the gap at the G
point (normal incidence).

5. CONCLUSION
We have presented two stable algorithms to compute dis-
persion relation diagrams from scattering or impedance
matrices of a single grating layer. We think that the
methods that we have presented in this paper are valu-
able tools in the domain of photonic crystal engineering.
Practical applications of photonic crystals are now con-
ceivable, and thus the need for accurate and reliable
methods to study their optical properties exists. One of
the advantages of the grating layer method is that it prof-
its from the great amount of work done in the domain of
diffractive optics and more precisely in the electromag-
netic theory of gratings. In this domain, the usual appli-
cations require accurate numerical results for design of
the structures, and thus numerical methods such as inte-
gral, differential, or modal methods are mature. With
the presented algorithms, all these methods can be used
for the computation of the dispersion relation of various
kinds of photonic crystals, with use of the more adapted
one depending on the geometry. We have shown the ef-
ficiency of our approach in the case of cubic-face-centered
woodpile photonic crystals with a rigorous modal method
and in the case of cubic simple photonic crystals with a
Fourier modal method. The rigorous modal method
adapted to woodpile structures gives us converged results
(within 0.5%) with only 5 3 5 basis functions and 0.11 s
per computed point. With the Fourier modal method, we
show again the relevance of the approach, with converged
results with 9 3 9 Fourier coefficients, while plane-wave
methods fail to converge with the same structure and
more than 1000 plane waves.

A decisive advantage of the approach is the possibility
of using the same code to investigate various physical
problems: dispersion relation, transmission, reflection
and absorption by a finite stack of photonic crystal slices,
emission of a dipole inside a limited photonic crystal, etc.

The corresponding author, Stefan Enoch, can be
reached by phone, 33-491-288-376; fax, 33-491-674-428;
or e-mail, stefan.enoch@fresnel.fr.
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