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1. INTRODUCTION

Photonic crystals have been the subject of considerable interest in the last
decade. Many potential applications in technological areas such as the
development of efficient semiconductor light emitters, filters, substrates for
antennas in microwaves, lossless mirrors, have generated an intensive
research in both experimental and theoretical domains. The properties of
these structures depend strongly on the materials used. Dielectric crystals in
general present transmission gaps limited to an octave or less while metallic
crystals have a gap extending from a null frequency to a cut-off value.
Metallic crystals are intended to be used in the microwaves region (antennas
substrates for instance) whereas dielectric crystals are mainly devoted to the
visible and infrared regions. Concerning the theoretical modelling of these
structures, efficient techniques are now available in the one and two-
dimensional cases. But the three-dimensional case leads to huge numerical
problems, and it is not possible at the present time to deal with finite size
structures sufficiently large to be realistic. This is the reason why it seems
necessary to get a better knowledge of the intrinsic properties of these 3D
structures. Homogenization techniques should be quite helpful, since they
are able to replace a complex 3D photonic crystal by a homogeneous
effective medium, which is much simpler to handle [1-4].

This paper presents two recent results obtained in our Laboratory using
the electromagnetic theory [5-7]. The first one concerns metallic crystals. In
the 2D case, we show that homogenization theory can predict with good
accuracy the plasmon frequency of the crystal. Moreover, we compare the
behaviors of 3D and 2D crystals, and we point out some similarities and
some differences in their properties. The second part is related to the
ultrarefractive property of 2D dielectric crystals [8]. This property appears at
the edges of the gaps, and is closely related to the fact that near the gap the
crystal simulates an effective medium with optical index close to zero. This
phenomenon appears when the complex transmission of the crystal presents
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rapid phase variations, and can give rise to surprising effects as anomalous
translation shift or splitting of a limited beam.

2. METALLIC CRYSTALS

2.1 Modelling tools

In this section, we study metallic crystals made of very thin infinitely
conducting wires lying in vacuum. Note that the infinitely conducting
assumption is not so restrictive in the microwaves frequencies. The radius of
the wires is 7, and they are arranged periodically with a period d. Three
different structures are studied, and we will call them 2D, 3D, and 3D-
periodic crystals (fig. 1).

The 2D crystals are studied with the help of rigorous electromagnetic
theories. In the case where the 2D crystal is periodic along x, we use a
grating code based on an integral theory [5]. When the crystal is composed
of a finite set of wires, we use a modal method based on scattering matrices,
the fields being expressed as Fourier Bessel series [6].

The theory we use for the study of the 3D crystal [7] is based on the
Electric Field Integral Equation (EFIE) proposed by Harrington for wire
antennas [9]. Since the radius of the wires is assumed to be small compared
to the wavelength, the unknown reduces to the intensity flowing in each
wire. In the original work of Harrington, it is assumed that the intensity
vanishes at a free extremity of a wire. We have shown that this assumption is
not valid in the case of our study [7]. Consequently, our theory does not use
this hypothesis. In the same way, we do not assume that Kirchhoff's law is
satisfied at a junction between wires. Numerous checks have been performed
in order to validate this approximate theory: energy balance and reciprocity,
comparison with rigorous methods in the bidimensional case, and with
another approximate method in the 3D case [10]. We found that the theory is
quite reliable provided that 7 is less than A/20 (A is the wavelength). But the
numerical size of this true 3D problem grows rapidly with the size of the
crystal. On our workstation (640 MB of memory), the crystal size limit is
about 5x5x5 elementary cubic cells.
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Figure 1. The 2D crystal is made of infinitely long parallel wires. It can be limited along the x
direction (finite number of rods), or infinite along this direction. In this case, it becomes a
grating composed of Ng grids (Ng = 3 on this figure). The 3D crystal depicted here is made of
4x4x4=64 elementary cubic cells with edge d. The 3D-periodic crystal is limited in the x and
y directions. It is composed of elementary cubic cells with edge d, and is periodic (and
infinite) along the z direction with period d. For clarity, only one slice of cells is represented
here.

In the case of the 3D-periodic crystal, we assume periodicity along the z
direction. If the incident field is a plane wave (whatever its wave vector and
its polarization), all the information is contained in the slice z[[0,d[. We
use the same theory as for the 3D crystal, but we replace the free space
Green's function exp(ikR)/R with a Green's function taking into account the
periodicity. This Green's function is now a series, whose terms can be
expressed as Hankel functions in order to ensure a fast convergence of the
series. Due to the reduced number of unknowns, we are able to deal with
much larger structures than in the 3D problem: on the same computer,
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crystals whose cross section is composed of 208 elementary cubic cells in
the x,y plane become affordable.

2.2 Homogenization in the two-dimensional case

Our aim is to show the similarities and the differences in the behavior of
these structures. It has been suggested [1,2] that these metallic crystals can
simulate a homogeneous material having a plasmon frequency in the
microwave domain. More precisely, and assuming E// polarization case
(electric field parallel to the wires), it has been shown from a mathematical
point of view that when the wavelength A tends to infinity, the relative
permittivity of the homogenized material can be easily deduced from the
crystal parameters from the following formulas:

w
ge=l-—LC-=1-— (1

/ d
A, =d zmn(zj (2)

The preceding formulas imply that for very large A, the permittivity is
negative, and the optical index is a pure imaginary number. It means that the
only solutions for the field in the crystal are evanescent, and no propagation
can occur.

It is worth noting that in the H// polarization case (magnetic field parallel
to the wires), and for the thin wires considered in this paper, there is no
interaction between the incident field and the wires. Let us give a very
simple explanation, which has nevertheless proved to be relevant in the
interpretation of these crystals properties. This interaction is governed by the
electric field, which moves the free charges in the metallic wire. In contrast
with the E// case, the electric field in the H// case is perpendicular to the
wires, and the charges are not able to move in this direction due to the small
diameter of the wires.

Figure 2 shows the transmission of a 2D metallic photonic crystal
illuminated in normal incidence by an E// polarized plane wave, for
increasing numbers of grids. The filtering property for large wavelengths
clearly appears, and we see that the transmission decreases exponentially
with the number of grids, i.e. with the thickness of the crystal. We also
observe a small gap centered on A = 1.8. Note that it has been shown that the
low-frequency gap of a metallic crystal is not a consequence of its
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periodicity [11]. In this reference, the study concerns 2D crystals, but the
result should hold for 3D crystals as well.

The most interesting feature of this set of curves is to show that the cut-
off wavelength (whose value is around 5) is equal to the value given by (2).
It suggests that the set of equations (1) and (2), established in the limit case
A — o could stay pertinent in the whole range of interest of these crystals,
i.e. from the cut-off to the static limit.
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Figure 2. Transmission of a 2D metallic photonic crystal with infinite extent in the x direction
and made of Ng grids, illuminated in normal incidence and E// polarization. d =1, = 0.01.

Many numerical experiments have been performed in order to get more
details on this conjecture [12]. We have considered the case of infinite
gratings made of grids, studied the influence of the number of grids, of the
incidence, of the radius of the wires. We also have considered the case where
the wires lay in a finite region. From this work, we get the following
conclusions. In the case of 2D metallic crystals made of thin wires with
periodic square arrangement, and in the E// polarization case:

» There exists a cut-off value given by (2) with quite good accuracy.
* In a range of wavelengths going from slightly less than the cut-off value
to infinity, the crystal behaves as a homogeneous material whose



permittivity can be represented by (1) with good approximation. Note
that it means that its effective optical index is real (and less than unity)
for wavelengths less than the cut-off value and pure imaginary otherwise
(which is in some sense obvious from energy considerations).

* The homogenized material is a little bit larger than the crystal itself. In
fact, the limits of the homogenized material are obtained from the actual
limits of the crystal by a translation of d/2.

In H// polarization, the crystal is transparent.

Let us illustrate on a simple example how these conclusions can be used.
We consider in figure 3 two photonic crystals made of 3 grids (with infinite
extent along the x-axis). According to the preceding rules, we can replace
this structure by two homogeneous layers whose permittivity is given by (1).
From the previous remarks, these two layers have a thickness equal to 3d,
and the distance between the layers is 3d. Figure 4 shows the transmission of
the two structures when they are illuminated in normal incidence by an E//
polarized plane wave. Of course, the agreement is not perfect. Specially, it is
surprising to notice the discrepancy of a factor around ten even for large
wavelengths. In fact, it should be noticed that, even though the
homogenization is an asymptotic process for large wavelengths, the crystal
of figure 3 is made of two layers of three grids only. Of course, the validity
of the homogenization requires the size of the object to be much greater than
the size of the elementary cell of the crystal. Nevertheless, the homogenized
structure allows us to predict qualitatively the behavior of the stack of grids,
and quantitatively the location of the peaks.

Some other examples have also been studied, and in particular the case of
a finite set of wires lying inside a circle [12]. We are led to the same
conclusions, i.e. that the set of wires can be replaced by a homogeneous
circular rod having the same diffraction properties.

BEEEES

Figure 3. Two crystals made of 3 grids. The wire spacing is d = 1. The distance between the
two crystals is 4d. The radius of the wires is 7 = 0.01.
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Figure 4. Transmission of the structure shown in figure 3 (solid line) and of the homogenized
structure (dashed line).

2.3 Comparison between two-dimensional and three-
dimensional cases

In the case of three-dimensional crystals, the basic idea is to say that,
since the crystal is made of wires parallel to the 3 principal directions of
space, the behavior of these crystals is less sensitive regarding the incidence
conditions and the polarization. Indeed, whatever the direction of the
incident wave vector, and whatever the polarization, there are always some
wires in the 3D mesh which interact with the electromagnetic field. This
prediction has been confirmed by our numerical investigations. Since there is
no simple way to define a transmission in the case of a 3D bounded object,
we define a quantity related to the penetration of the field inside the crystal.
For this purpose, we compute a mean value of the electromagnetic energy,
on several points close to the centre of the crystal. Figure 5 compares this
quantity for several structures:

* 2D crystal composed of 5x5 parallel wires, normal incidence, E//
polarization,

* 3D crystal composed of 4x4x4 cubic cells, normal incidence, electric
incident field parallel to one of the wires directions,



* 3D-periodic crystal whose xy section is composed of 20%4 cubic cells (20
along x and 4 along y), electric incident field E'=exp(—iky) e, (see
figure 1),

« Same crystal, but E' = exp(—iky) e ‘o

* Same crystal, but E = (—2e, —e, + ZeZ)/\@ exp(i K’ (¥), and
k' =k (-e,—2e, —2e.)/\/9 .

Figure 5 shows that the penetration inside the crystal has the same
behavior in these different cases. Note that in the last case, the energy is
lower, which can be attributed to the fact that the incident wave vector k' is
not normal to the crystal. In all cases, the cut-off wavelength is close to 5,
which is the value given by (2).
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Figure 5. Energy at the centre of the crystal for several structures (details in the text).

Let us consider now a 3D-periodic crystal as depicted in figure 1, with a
xy cross section made of 20x8 cubic cells. Figure 6 shows the field maps for
two different polarization cases. In the upper map where the electric incident
field is parallel to the z-axis, the screening property of the crystal is evident.
The lower map (electric incident field parallel to the x-axis) shows two
features. First, the value of the field inside the crystal is about the same as in
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the upper map, which confirms the previous paragraph results. Second, there
is clearly no shadow below the crystal. The difference between these two
cases is due to the intensities flowing in the wires. In the case of the upper
map, all the intensities flow along the wires parallel to the z-axis
(computations show that the intensities along the other wires are
insignificant). Intensities only take significant values on the upper face of the
crystal, and decrease rapidly inside the crystal. In the case of the lower map,
the intensities are inclined to flow along the wires parallel to the x-axis.
Since the crystal is limited in this direction, we numerically observe that they
actually flow in the plane of the figure, but on the entire boundary of the
crystal. That is why they radiate a field all around the crystal. This property,
which is due to the finite size of the crystal, should be kept in mind in the
prospect of screening applications involving metallic photonic crystals.
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Figure 6. Modulus of the total electric field in the xy section a 3D-periodic crystal with 20x8
cubic cells. The crystal is located in the area —10 < x < 10 and 0 < y < 8. It is illuminated in
normal incidence by a plane wave with unit amplitude, coming from the top of the figures.
The wavelength is A = 6 (greater than the cut-off wavelength). Top: incident field parallel to
the z-axis. Bottom: incident field parallel to the x-axis. The color maps are the same in both
cases, going from black inside the crystal (modulus less than 0.2) to white (between 2 and
2.2). Crystal parameters: d =1, r=0.01.
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3. ULTRAREFRACTION PROPERTIES OF 2D
DIELECTRIC CRYSTALS
3.1 Presentation of the phenomenon

It has been suggested from dispersion diagrams that the phase velocity of
Bloch waves inside an infinite photonic crystal could tend to infinity near the
band edges [13-15]. Consequently, the crystal should have an effective
optical index that tends to zero, and should exhibit strange ultrarefractive
properties. In fact, this effective index depends on the direction of
propagation; i.e. the equivalent homogenized structure is not isotropic. A
detailed study of the dispersion diagrams in the Brillouin zone can bring
some information on this effective index, but it is not in the scope of the
present paper. We want here to study numerically and quantitatively the
ultrarefractive phenomena, which may occur when a limited beam
illuminates a finite crystal.

The crystal is a 2D structure (figure 1) made of dielectric circular rods
with optical index 3, and lying in vacuum. The radius of the rods is
r=0.475, the square cell has a spacing d = 1.27. These parameters are those
of the experimental study of Smith et al. [16]. In the present study, the
crystal is made of 7 grids (Ng= 7). All the study concerns E// polarization
(electric field parallel to the rods).

Figure 7 gives the dispersion relation of the infinite crystal computed
with the plane waves expansion method [17]. We work near the full gap
represented by the light dot lines. Since we consider incidences close to the
normal (y-axis, which corresponds to the =X region), the local gap appears
to be wider, and the frequency of interest is pointed out by the dashed line
(d/N=0.5). We remark that the group velocity is low in this region, as
shown by the low slope of the dispersion curve. Note that there is another
gap for greater wavelengths (d /A =0.26).
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Figure 7. Dispersion relation for E// polarization in a 2D crystal with square lattice. The
abscissa represents the Bloch wave vector in the Brillouin zone where ', X and M stand for
(0,0), (17d,0) and (1vd,1vd).

3.2 Numerical analysis of the transmission of a plane
wave

Since the phenomena occur at the band edge, let us study the
transmission factor of the grating (infinite along the x direction) made of 7
grids. To this end, we use our grating code based on an integral theory [5].
The complex transmission factor in the zero grating order #(8,A) depends on
the angle of incidence of the incident plane wave 8 and on the wavelength.
We plot in figure 8 the square of the modulus (transmitted energy) and the
phase of #(0,A). Note that in the range of interest, the grating gives rise to
only one propagating order. Figure 8 shows the shorter wavelengths band
edge of the gap. The two peaks for A = 2.558 and 2.545 will enable us to get
a significant transmission of the beam. Note that for each of them, the phase
shows a rapid variation.
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Figure 8. Energy (solid line) and phase (dashed line) of transmitted zero order. Normal
incidence, E// polarization. The smaller inserted graph shows the energy on a larger range of
wavelengths.

33 Anomalous shift and widening of a gaussian beam

In a simple and heuristic analysis, we can see the crystal as a
homogeneous layer with low optical index. Consequently, we expect to
exhibit two phenomena depicted in figure 9: the widening and the anomalous
shift of a limited beam going through the crystal.

e<1

Figure 9. Schematic representation using Fresnel's law of the widening (left) and of the
anomalous shift (right) of a beam going through a slice of low index material
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From now on, we suppose that A is fixed, and thus we omit the
wavelength dependency. The incident limited beam is described by a
gaussian plane waves packet:

+o00

E"™(x,y)= [ A(a)expliox ~i(a)y)da 3)

—00

where o =(2nsinB)/A, B(a) =vk? -a’ . We consider a gaussian beam
with width /7 and mean incidence 6, such as o, =(27tsin8,)/A :

_(O(_O(O)ZWZ} 4)

_w
A(a) = T exp( 4

Putting t(01) =#(6,M\), the transmitted field is given by (the evanescent
waves, which vanish rapidly around the crystal, can be neglected):

+00

E'(x,)= [ A(a) 1(a) expliox ~iB(a)y) da (5)

—00

It means that the knowledge of #(6,A) is sufficient to get the transmitted
field. It can be noticed that for y =0, the transmitted field is the Fourier
transform of A(a) T(a). Equation (5) shows that the plot of #(6,A) for the
fixed value of A will bring us useful information on the transmitted field.
This information, as well as the angular dependency of A(Q), is given in
figure 10, which shows that the product of 4(a) by T(a) in (5) will narrow
the angular range of waves in the transmitted packet, and consequently
widen its Fourier transform, thus the spatial width of the transmitted beam.
This widening is clearly observed in figure 11.
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Figure 10. Transmitted energy (solid line) and phase (dashed line) of #(6,A) for A =2.545.
The dotted line represents the exponential factor in equation (4).
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Figure 11. Widening of the beam: field map of the incident (above the crystal) and
transmitted (below the crystal) field modulus. The transmitted field has been multiplied by a
factor 2.25 in order to get the same maximum value as the incident field. A = 2.545, normal
incidence, W = 15. The white region corresponds to the crystal.

In order to observe an anomalous beam shift, let us change the mean
incidence to 6, = 6.4° corresponding to the second peak on figure 10. This
phenomenon is very close to Goos-Hanschen effect that arises near the total
reflection on a plane interface. As well known, the amplitude of this shift is
linked to the fast variation of the reflection coefficient phase. In our case, the
choice 0, =6.4° presents two interesting features: it brings a great
transmitted energy, and offers a wide phase variation. The phenomenon is

illustrated in figure 12.
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Figure 12. Anomalous beam shift: field map of the total field modulus. Same parameters as in
figure 11, but 8, =6.4°. Here, the transmitted field has not been normalized. The dark lines
show the locus of the maximum incident and transmitted beams. We also see an interference
pattern between the incident and the reflected fields.

CONCLUSION

In a first part of this paper, it has been shown from numerical results
based on a theory of scattering from thin metallic wires that the formulae
coming from mathematical studies of homogenization provides a precise
estimate of the properties of metallic photonic crystals, even when the
wavelength has the same order of magnitude as the period of the crystal.
This property which could simplify considerably the numerical calculations
is all the more interesting since it extends to doped crystals.

In a second part we have confirmed from numerical calculations the
phenomenon of ultrarefraction generated by photonic crystals at the edges of

a gap.
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