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The Richness of the Dispersion Relation of
Electromagnetic Bandgap Materials

Stefan Enoch, Gérard Tayeb, and Boris Gralak

Abstract—In this paper, we review several effects that arise
from the richness of the dispersion relation of the electromagnetic
bandgap materials (EBGMs). Indeed, EBGMs could simulate
homogenous material whose optical index is lower than one or
even negative (at least for the refraction). We take advantage of
this property to design a lens with very short focal length or to
confine emission in a narrow lobe. It is also shown how one can
take advantage of the rapidly varying properties of the EBGMs
near a band edge to design a prism whose dispersion is greater
than any conventional prism or grating.

Index Terms—Electromagnetic bandgap materials (EBGMs),
emission, refraction.

I. INTRODUCTION

E ELECTROMAGNETIC bandgap materials (EBGMs)
have been have been the subject of intensive research in

the past few years. Basically, EBGMs are dielectric or metallic
periodic structures whose spatial periods are of the order of
magnitude of the considered wavelength. The unique feature of
these structures is their ability to open a bandgap that is a fre-
quency range for which the propagation of photons is forbidden
whatever the direction of propagation and the polarization. A
major consequence is the possibility to inhibit spontaneous
emission that has been one of the earlier motivations to create
photonic bandgaps [1].

In this paper, we will discuss some properties of the EBGMs
when used with a wavelength that does not belong to the
bandgap. We will review several effects and applications
proposed by our group and others. Their common feature is that
the key point is the richness of dispersion relation of EBGMs.
Indeed, the bandgap is only one modification of the dispersion
relation that follows from the periodic modulation of the
permittivity of the structure. As a consequence, several effects
have been demonstrated in recent studies such as superprism
effect or negative refraction [2]–[4]

First, we will develop the theoretical tools we have used to
understand and design the properties of EBGMs based devices.
We will summarize the properties of the Bloch modes that prop-
agate in infinite EBGMs and a special attention will be paid to
the propagation of the energy.

Then we will apply these tools to design a EBGM that be-
haves as a homogeneous material with optical index smaller
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Fig. 1. Finite size 2-D EBGMs made of a finite number of rods. The structures
could be illuminated by an external beam (left) of excited by an internal source
(right). The coordinate system used in this paper is also represented.

than one (to illustrate ultrarefraction) or even with negative op-
tical index (to illustrate negative refraction). An example of an
ultrarefractive lens will be also given.

The shape of the dispersion relation at the vicinity of the band
edge will allow us to design a prism whose dispersion is greater
than any conventional prism or grating.

We will also show how to confine the emission of the light
using a EBGM.

II. THEORETICAL TOOLS

We will consider throughout this paper two-dimensional
(2-D) EBGMs made of a finite number of dielectric rods
laying in vacuum. The rods are assumed to be infinite along
the axis (the coordinate system is defined on Fig. 1). We are
interested in two situations: either the EBGM is enlightened by
an external beam (or eventually a plane wave) or the EBGM
is excited by an internal source, for example a dipole. In both
cases, our aim is to predict the behavior of the finite structure
from the knowledge of the properties of the infinite structure.

A. Infinite Structure

We have first to study the properties of the infinite structure.
Thus, our objective is to find the allowed propagative modes in
the structure and their properties. Of course, if there are no such
propagative modes for a frequency range we have detected a
bandgap.

Then we assume that the infinite structure fills the whole
space and that there is no incident field. As we consider 2-D
problems, two fundamental cases of polarization exist and all
the following examples are for the E// case, that is when the
electric field is parallel to the rods. The periods of the structure
are and then for any integer values ofand

(1)

where is the relative permittivity.
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Fig. 2. Dispersion relation of the Bloch modes in a EBGM made of dielectric rods with permittivity" = 9 lying in vacuum. The circular cross section of the
rods has a radiusr = 0:475. The rods are arranged on a square lattice with periodsa = d = d = 1:27. The polarization is E// (the electric field is parallel to
the rods). The small insert represents the reduced Brillouin zone.

It is now well known that the allowed propagative modes in
EBGMs are Bloch modes (as for electrons in crystals). We as-
sume a time dependence and use the usual complex
amplitudes for harmonic fields. Thus, for any Bloch mode, the
-component of the electric field can be written in the form

(2)

where is a periodic function

(3)

and is the Bloch wave vector, which is usually assumed to be
real.

It exists now several methods to calculate the dispersion
relation of the Bloch modes. Whatever the method used
one can obtain a dispersion diagram usually represented as the
one of Fig. 2 (the parameters of the structure are given in the
figure caption). On this diagram, the normalized frequency

is represented as a
function of the Bloch wave vector whose extremity makes a
path along the edges of the first reduced Brillouin zone. The
first reduced Brillouin zone for the considered structure is
represented in the insert of the Fig. 2.

For our purpose it is convenient to give a more complete rep-
resentation of the dispersion relation as that shown on Fig. 3.
Again the normalized frequency is plotted as a function of the
Bloch wave vector, but now all the values of the first Brillouin
zone are considered. The diagram on Fig. 2 is nothing else than
the intersection between the sheets of Fig. 3 and vertical planes
starting from the edges of the first reduced Brillouin zone (rep-
resented by the lines in the ( ) plane).

We focus now on the frequency region just above the second
bandgap. Fig. 4 is an enlarged view of the dispersion relation in

Fig. 3. 3-D dispersion diagram. The parameters are identical to those of Fig. 2.
The lines in the (k ; k ) plane represent the first reduced Brillouin zone.

this region. Two bands represented by two sheets on this figure
exist: an ascending one and a descending one when the Bloch
wave vector components increase. Let us now consider a har-
monic problem, that is to say a given frequency. The Bloch
modes that can exist are given by the intersection of the sheets
and a horizontal plane, for example the plane corresponding to
the value of the limit between the two colors on the
sheets on Fig. 4.

If we reproduce these intersections in the ( ) plane and
complete the diagram using the symmetries we obtain the con-
stant frequency dispersion diagram of Fig. 5.

The last point concerns the direction of propagation of the
energy of a given Bloch mode. On the diagram of Fig. 5 a given
Bloch mode is represented by a point on the curves and it can be
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Fig. 4. Enlarged view of the 3-D dispersion diagram of Fig. 3.

Fig. 5. Constant-frequency dispersion diagram for� = 2.545. The arrows
indicate the direction of the energy velocity for two particular Bloch waves.

shown that the average direction of propagation of the energy of
this Bloch mode is given by the group velocity [9]

grad (4)

On Fig. 5 the direction of is perpendicular to the curves
and points toward the ascending side of the sheets. Note that,
of course, the direction of average phase velocity is given by
and his modulus is . Thus, it can be completely different
from the group velocity.

B. Finite Size EBGMs

Now the question is: how can we use the dispersion relation
of Bloch modes to predict or to design the properties of EBGM
based devices.

Fig. 6. Geometrical construction based on the conservation of the tangential
components of the wave vector. The large circle with radiusk = !=c
represents the constant frequency dispersion diagram of vacuum. The angle of
incidence of the plane wave is 6.4 degrees. (represented by the arrow coming
from the top of the figure). The two Bloch modes that can be excited are
deduced from the conservation of the tangential component of the wave vector
(vertical dashed line). The arrows represent the direction of the associated
energy flows.

The key point is that the tangential component of the Bloch
wave vector is conserved at the boundaries of a slice of EBGM.
This result is rigorously verified for an infinite slice of EBGM
along the axis [4].

Then we are led to the geometric construction shown on
Fig. 6. The large circle is the constant frequency dispersion
diagram of the surrounding media (with radius for example
for the vacuum) while the other curves are the constant fre-
quency dispersion diagram for the considered EBGM (identical
to Fig. 5).

Let us consider that an incident plane wave illuminates a slice
of this EBGM. We assume that the “interfaces” of the slice are
perpendicular to the axis. If the angle of incidence of the plane
wave is such that its wave vector is in the direction given
by the solid line arrow (see Fig. 6), then the tangential compo-
nent of this wave vector is given by the vertical dashed line.
Thus, the two Bloch modes that can be excited in the struc-
ture are given by the intersection of this line and the constant
frequency dispersion diagram. Given the ascending side of the
corresponding sheets (see Fig. 4) the energy will flows toward
the directions shown by the solid line arrows (starting form the
dispersion curves).

Fig. 7 shows a map of the electric field modulus resulting
from a rigorous numerical simulation using the extended
Rayleigh method. A finite size EBGM made of 483 rods is
enlightened by a limited beam coming from the top of the
figure. The fringes above the structure are due to interferences
between the incident beam and the reflected one on the first
interface. The beam inside the EBGM propagates in the exact
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Fig. 7. Map of the electric field modulus for a EBGM made of 483 rods with
the parameters of Fig. 2. The structure is illuminated by a gaussian beam with
mean angle of incidence� = 6:4 degrees. The lines show the locus of the
maximum of the beams.

Fig. 8. Idem as Fig. 6 but with� = 40 degrees.

direction given by the previous geometrical construction. If
we interpret this diagram in term of Snell-Descartes laws, it
corresponds to an effective optical index smaller than one.

Let us now increase the angle of incidence such that the tan-
gential component of the wave vector is given by the vertical
dashed line on the Fig. 8. Then, the two Bloch modes that can
be excited are given by the intersections with the constant fre-
quency dispersion diagram, but now the ascending side of the
sheets is toward the center of the figure (see Fig. 4) and the en-
ergy will propagate as represented by the arrows.

Fig. 9 shows the electric field modulus map when a finite
size EBGM is illuminated by a finite size beam and again

Fig. 9. Idem as Fig. 7 but with� = 40 degrees.

in the EBGM the energy propagates in the direction given
by the geometrical construction. The refracted beam in the
structure behaves as in a homogeneous media with negative
optical index, which leads to call this phenomena “negative
refraction.”

Note that for these Bloch modes the average energy velocity
is quasi-opposite to the average phase velocity and with a slight
change of angle of incidence they can be exactly opposite. This
remark and the fact that negative refraction can be observed
makes the link with the so-called left-handed material or double
negative material or also material with negative refractive index
[11]–[15]. These materials are artificial materials that consist in
periodic metallic structures (and can be also seen as a metallic
EBGM). These structures are actually the subject of intensive
research. Several properties such as their ability to focus even
the evanescent waves to make a perfect lens have been studied
[13]. Their realization in the optical domain will be difficult be-
cause of the losses of the metals for optical wavelengths. Here,
the dielectric EBGMs could be a valuable alternative.

Note that the negative refraction has been experimentally ob-
served in a very nice experiment by Kosakaet al. [3].

III. L ENS

The first optical component we have tried to design was a
lens, using a EBGM with effective index smaller than one (but
positive) to obtain a lens with very small focal length. Usually,
isotropic materials are used to design lenses. That is the reason
why we have chosen the wavelength in order to obtain a con-
stant frequency dispersion diagram that is almost a circle as
represented on Fig. 10. Then the EBGM simulates a homoge-
neous isotropic material with very low effective optical index
( ).

Fig. 10 shows the electric field modulus map when a EBGM
that has been shaped with a quasi-circular interface is illumi-
nated by a limited beam. A clear focusing of the light can be
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Fig. 10. Left : micro-lens illuminated in normal incidence from the top by a Gaussian beam in E// polarization and with� = 2:56. Right : constant frequency
dispersion diagram for� = 2:56.

Fig. 11. Modulus of the electric field. Top : along thex direction fory = �

57.5. Bottom : along they direction forx = 0.

observed. Note that a similar lens made with an ordinary di-
electric would be a divergent lens. The focal length calculated
using the classical formulas

(5)

where is the radius of the concave face of the lens, is equal
to 55 (that is about 21). This value is very close to the focal
lens evaluated on the field map (about 53). In this example, the
width of the lens is about 25.

Fig. 11 shows the electric field modulus alongand direc-
tions (through the focus point). The low level of the field mod-
ulus outside the focusing region along thedirection proves the
focusing efficiency of the proposed lens.

In another connection, it has also been proposed by Luoet
al. to design a lens using a slab of dielectric EBGM [16]. Their
lens uses the negative refraction due to the fact that the constant
frequency dispersion diagram at the considered wavelength is

Fig. 12. Prism illuminated from the left by a Gaussian beam with� = 2:56.

Fig. 13. Diffracted energy at infinity for three different wavelengths.
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Fig. 14. Structure made of a hexagonal EBGM and a vertically expanded
structure. The source is located atx = 0 and y = 34. The dielectric
circular rods with optical index 2.9 and radius 0.6 lie in vacuum. The period
of the hexagonal lattice isd = 4. The expanded lattice is a hexagonal lattice
expanded by a factor 1.127 in they-axis direction.

(a)

(b)

Fig. 15. (a) Enlarged view of the 3-D dispersion diagram for the hexagonal
structure. (b) Idem for the expanded structure.

Fig. 16. Schematic construction representing the conservation of the
tangential component of the Bloch wave vectors.

convex. This lens is a potential alternative to the left-handed
material based perfect lens, particularly in the optical domain
where metals suffer from important losses.

IV. PRISM

When the wavelength is chosen close to the edge of the
bandgap, one can take advantage of the parabolic shape of the
dispersion relation. Indeed at the band edges the dispersion
relation diagram has a horizontal tangent and then a small
change of frequency can change significantly the properties
of the EBGM. It has been proposed to design dispersive
components [2].

On Fig. 12, a prism made of the same EBGM as previously is
illuminated from the left of the figure by a beam and we look for
the emerging beam from the larger edge of the prism. Note that
the prism edge is only 14. On Fig. 13 the far-field intensity
is represented as a function of the anglefor three slightly dif-
ferent wavelengths. The obtained prism is more dispersive than
any usual prism or grating.

V. CONTROL OF THEEMISSION

Our aim is now to control the emission of a source embedded
inside a EBGM. We will show how to canalize the emitted light
in a narrow angular region outside the EBGM.

We consider a device made of two different EBGMs (see
Fig. 14). One has a hexagonal lattice and the second has a lat-
tice that is obtained by expanding the same hexagonal lattice in
the -axis direction. The excitation comes from a point source
located roughly at the center of the expanded structure. The pa-
rameters are given in the figure caption.

Fig. 15 shows a part of the 3-D dispersion diagram for the
two crystals and the lower horizontal plane of the figures has
been chosen to correspond to the working wavelength of the
source ( ). For the hexagonal structure this wavelength
is in the bandgap (there is no intersection between the sheets and
the horizontal plane) while for the expanded structure solutions
exist (in the upper left corner of the figure).
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Fig. 17. Left: electric field modulus radiated by the structure at� = 7:93. Right: emission diagram.

Fig. 18. The structure has been expanded in a direction at 33 degrees. from they axis and is above a ground plane. Top: electric field map when the structure is
excited by a point source with� = 8.01 located in the center of the structure. Bottom: emission diagram.

We assume that the source will emit in all the permitted modes
and again we make use of the conservation of the tangential
component of the wave vector. Fig. 16 shows the constant fre-
quency dispersion diagram of the surrounding media (vacuum)
and the expanded EBGM (the small ellipse-like curve). All the
excited Bloch modes have their tangential component of the
Bloch wave vector in the region delimited by the vertical dashed
line. Thus, it must be the same for the waves excited in vacuum,
that is to say that all the emitted light will be confined inside the
gray angular domain and smaller is the ellipse smaller is these
angular domain.

The field map (see Fig. 17) shows the electric field modulus
when the structure is excited by a point source. The lower hexag-

onal structure prevents from the emission downwards. Note that
the field fills the whole structure and that all the upper sur-
face participates to the emission in vacuum. Here the important

-component of the phase velocity permits to obtain a surface
that emits coherently.

The radiation pattern (Fig. 17) shows that the energy emitted
from the EBGM source is canalized in a narrow lobe. As shown
by Fig. 17, the emission from the lateral faces of the device is
very low.

Fig. 18 shows another example that illustrates that we can de-
sign a source emitting in an off-axis direction by expanding the
structure in a different direction. For this example the hexagonal
structure has been replaced by an infinitely conducting ground
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plane at . The radiation pattern shows clearly that the
emission occurs principally in a lobe directed in a direction dif-
ferent from the normal to the mean out-coupling plane.

We have also studied the emission of dipoles in 3-D struc-
tures such as the so-called woodpile structure of simple cubic
EBGMs and we have obtained an angular confinement of the
emission together with an increase of the emitted power (and,
thus, a decrease of the life time) [17], [18].

VI. CONCLUSION

In this paper we have shown that the modifications of the
dispersion relation that comes from the periodic modulation of
the permittivity leads to a rich variety of effects. Several effects
such as negative refraction or control of the emission have been
illustrated and fully understood using simple theoretical tools
based on the dispersion relation of the Bloch modes in infinite
EBGMs, and the continuity of the tangential component of the
Bloch wave vector.

It must be reminded that the effects we have shown are due to
a collective behavior of the whole EBGM and not to a local mod-
ification of the structure as in the case for example of a micro-
cavity made by creating a defect in a EBGM. In that sense, the
EBGMs can be considered as a metamaterial as the left-handed
material are. One of the questions that has been raised is if the
EBGMs could be an alternative to the left-handed materials for
the optical wavelengths.
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