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Abstract

In magneto-optic systems, Kerr and Faraday effects bring into play reflection and transmission matrices. Consid-

ering planar multilayer systems, we show that the elements of the reflection and transmission matrices obey general and

simple relations valid whatever the geometry of the magneto-optic device may be. � 2002 Elsevier Science B.V. All

rights reserved.

1. Introduction

Magneto-optic effects stems from the interac-
tion of light with media submitted to a magnetic
field. This interaction gives rise to a rotation of the
polarization vector of both the transmitted and
reflected fields called the Faraday and Kerr effects
[1–3], respectively. Thus when a magneto-optic
system is illuminated by a TE or s (TM or p) po-
larized light, the reflected and transmitted fields
include a p (s) component. Consequently, Kerr
and Faraday effects involve reflection and trans-
mission matrices:

½r� ¼ rss rsp

rps rpp

� �
; ½t� ¼ tss tsp

tps tpp

� �
;

where the right-hand superscript denotes the inci-
dent polarization.
Several theories have been developed for the

determination of the elements of the ½r� and ½t�
matrices [4–9]. For polar and longitudinal config-
urations [10,11], the calculations [4–9] always show
that rsp ¼ �rps whatever the system under consid-
eration may be. Thus, it is tempting to wonder
whether such a result would be a general property
of magneto-optic devices. In this paper, we show
that this is indeed the case. We also address the
question of the link between tsp and tps. The theory
that we have developed is presented in Sections
2.1–2.4. Properties concerning the diagonal ele-
ments of ½t� are considered in Section 2.5. The
demonstrations of these relations are based on the
use of the Lorentz reciprocity theorem [12] and
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applies to any planar multilayer and/or gradient
permittivity magneto-optic system. Section 3 is
devoted to numerical calculations which allow one
to check the general relations derived in Section 2.

2. Theory

2.1. General considerations

This section is devoted to the constitutive rela-
tions, to Maxwell equations and to the linearity of
the magneto-optic system.
The system under consideration is depicted in

Fig. 1 and consists of three domains a, b, and c.
The plane of incidence is the plane ðxOyÞ and Fig.
1 corresponds to the two-dimensional situation for
which o=oz ¼ 0. The incident plane wave is s or p
polarized i.e. electric or magnetic field parallel to
the z-axis respectively. The superstrate a ðy > 0Þ
and substrate b ðy < �eÞ are assumed to be ho-
mogeneous, isotropic and non-magnetic. Medium
c exhibits magneto-optic effects and may include
one or several magneto-optic layers. For the sake
of generality, its permittivity tensor is y-depen-
dent.
At optical frequencies, it is possible to describe

a magneto-optic medium by its permittivity tensor
½e� and a permeability being that of vacuum
[10,11,13]. Thus:

~DD ¼ e0½e�~EE; ð1aÞ
~BB ¼ l0~HH ð1bÞ

and Maxwell equations are written as:

curl ~EE ¼ þixl0~HH ; ð2aÞ

curl ~HH ¼ �ixe0½e�~EE; ð2bÞ

where an e�ixt time-dependence is understood. The
permittivity ½e� in Eqs. (1a) and (2b) depends on y
as follows:

½eðyÞ� ¼
ea for y > 0;
ecðyÞ½ � for � e < y < 0;
eb for y < �e:

8<
: ð3aÞ

The dielectric tensor ½ec� depends on the magneto-
optical orientation. The three fundamental situa-
tions are the following:
• the polar magneto-optical orientation for
which,

epolc

� �
¼

ed 0 end
0 ed 0

�end 0 ed

2
4

3
5; ð3bÞ

• the longitudinal magneto-optical orientation
for which,

½elongc � ¼
ed 0 0
0 ed end
0 �end ed

2
4

3
5; ð3cÞ

• the transverse magneto-optical orientation for
which,

½etransvc � ¼
ed end 0

�end ed 0
0 0 ed

2
4

3
5: ð3dÞ

The dielectric tensor ½ec� in Eqs. (3a)–(3d) may be
rewritten as:

½ec� ¼ ½ed� þ ½end�; ð4Þ
where ½ed� and ½end� are the symmetric and anti-
symmetric parts of ½ec�, respectively. The symmet-
ric part does not give rise to the Faraday or Kerr
effects [9]. Thus we assumed in Eqs. (3b)–(3d) that
medium c is isotropic when no magnetic field is
applied.
Let us now show that the problem at hand is

a linear one with respect to the magneto-optic
effect.
Eqs. (2a), (2b) and (4), written in medium c,

lead to (see Appendix A):
Fig. 1. An example of a three domain system including a

magneto-optic layer with permittivity tensor ½ecðyÞ�.
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D~EE þ k20ed~EE þ grad Ey
1

ed

ded
dy

� 


¼ �grad 1

ed
div ½end�~EE

� �� 

� k20 end½ �~EE ð5aÞ

with

k0 ¼
x
c
: ð5bÞ

From Eqs. (5a) and (3d), taking into account that
o=oz ¼ 0, it is found that the transverse magneto-
optical orientation does not induce any rotation of
the polarization vector.
The antisymmetric part of ½ec� induces a small

rotation of the plane of polarisation [10]. There-
fore:

½end�~EE 	 ½end�~EEd; ð5cÞ

where ~EEd denotes the electric field only due to the
symmetric part of ½ec�. Thus Eq. (5a) writes:

D~EE þ k20ed~EE þ grad Ey
1

ed

ded
dy

� 


	 �grad 1

ed
div ½end�~EEd

� �� 

� k20 end½ �~EEd: ð5dÞ

Eq. (5d) is a linear one. If the magneto-optical
orientation is in the plane of incidence xOy
then:

½end� ¼ ½elongnd � þ ½epolnd �: ð6aÞ
Eqs. (5d) and (6a) show that, in this case, the re-
sponse in reflection (Kerr effect) or transmission
(Faraday effect) will be the sum of the responses
corresponding to each of the situations Eqs. (3b)
and (3c). Therefore in this paper, we only consider
longitudinal and polar magneto-optical orienta-
tions.
Moreover, as will be seen in the following

section, the transposed permittivity tensor de-
noted t½e� will be needed. According to Eqs.
(3a)–(3d):

t½ec� ¼ ½ecð�endÞ�: ð6bÞ
Because of the linearity of Eq. (5d), changing end to
�end will not modify the absolute value of the off-
diagonal elements of ½r� and ½t�, only the signs of
these elements will be changed.

2.2. The Lorentz reciprocity theorem

Let us consider two solutions of the Maxwell
equations at the same frequency x, labeled 1 and
2, without any source term; the Lorentz reciprocity
theorem [12] states that:

div ~EE1
�


 ~HH2 �~EE2 
 ~HH1

�
¼ 0: ð7Þ

When the system includes media with non-
symmetrical permittivity tensors, which is the case
here, solution 1 is associated to the permittivity
tensor ½e� whereas solution 2 has to be associ-
ated to the transposed permittivity tensor t½e�. To
keep its generality to the calculation, we do not
specify for the moment the nature of solutions 1
and 2.
Let us consider Fig. 2: it is characterized by one

incident wave (labeled i) in media a and b, each
incident wave giving rise to a reflected and a
transmitted wave. Therefore the total electromag-
netic (EM) field in each outside medium is the sum
of the incident, reflected and transmitted waves.
The angles of incidence ha and hb in media a and b,
respectively, are chosen such that the reflected and
transmitted EM fields in these media propagate in
the same direction. This requires:

na sin ha ¼ nb sin hb; ð8Þ

Fig. 2. The geometry and the contour used for deriving the

relations between the off-diagonal elements of ½r� and ½t�.
Solution 1: both incident waves are p-polarized and

½eð�e < y < 0Þ� ¼ ½ec�. Solution 2: both incident waves are s-

polarized and ½eð�e < y < 0Þ� ¼ t½ec�.
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where na and nb are the indices of refraction of
medium a and b, respectively.
Eq. (8) is fulfilled throughout this paper; ‘‘r’’

denotes the outgoing field which is the sum of the
reflected and transmitted fields in superstrate and
substrate.
Integrating Eq. (7) in a volume V yields:Z Z Z
V

divð~EE1 
 ~HH2 �~EE2 
 ~HH1ÞdV ¼ 0: ð9aÞ

The system being z-independent, the integration
is performed on the surface R illustrated in Fig. 2
(instead of volume V). Thus:Z Z

R

divð~EE1 
 ~HH2 �~EE2 
 ~HH1Þdxdy ¼ 0 ð9bÞ

Use of the two-dimensional form of the diver-
gent theorem allows us to rewrite Eq. (9b) as:I
C¼ABCD

~EE1
�


 ~HH2 �~EE2 
 ~HH1

�
�~nnd‘ ¼ 0; ð9cÞ

where ~nn is the unit vector, in the xOy
plane, perpendicular to the boundary C (called
ABCD) of surface R and pointing toward the
outside of R (see Fig. 2) and ‘ is a curvilinear
abscissae.
The length of AB ¼ DC ¼ d is chosen in such a

way that the total EM field has the same value
along AD and BC. Consequently Eq. (9c) reduces
to:Z d

0

ð~EE1
n


 ~HH2 �~EE2 
 ~HH1Þjy¼0 : ~nny

�ð~EE1 
 ~HH2 �~EE2 
 ~HH1Þjy¼�e �~nny
o
dx ¼ 0; ð10aÞ

with ~nny ¼ ð0; 1; 0Þ.
From Eq. (8), it follows that the EM field in all

regions have the same eiax-dependence with:

a ¼ ðx=cÞna sin ha ¼ ðx=cÞnb sin hb: ð10bÞ
Let us define:

~QQa ¼ ~EE1
�


 ~HH2 �~EE2 
 ~HH1

����
y¼0

; ð10cÞ

~QQb ¼ ~EE1
�


 ~HH2 �~EE2 
 ~HH1

����
y¼�e

; ð10dÞ

~QQ ¼ ~QQa � ~QQb; ð11aÞ

Then Eqs. (10a) leads to:

~QQ �~nny ¼ 0; ð11bÞ

The remaining of the calculation proceeds as
follows: we first derive the expression of ~QQa. Then
a first couple of solutions 1 and 2 is specified. For
this set, we get the expression of the scalar product
~QQ:~nny . This allows us to derive the relations be-
tween the off-diagonal elements of matrices ½r� and
½t�. A second couple of solutions 1 and 2 yields
relations which involve the diagonal elements of
½t�.

2.3. Calculation of ~QQa

~QQa is rewritten as:

~QQa ¼ ð~EEa1 
 ~HH a
2 �~EEa2 
 ~HH a

1 Þ: ð12aÞ

~QQa ¼ ð~EEa1;i
h

þ~EEa1;\r"Þ 
 ð~HH a
2;i þ ~HH a

2;\r"Þ

� ð~EEa2;i þ~EEa2;\r"Þ 
 ð~HH a
1;i þ ~HH a

1;\r"Þ
i
: ð12bÞ

In the outside media the EM field is a sum of
plane waves; for each of them, the following rela-
tions hold:

~HH ¼ 1

xl0
~kk 
~EE; ð13aÞ

~kk �~EE ¼ 0; ð13bÞ

where ~kk denotes the wavevector.
Use of Eqs. (13a) and (13b) shows that Eq.

(12b) becomes:

~QQa ¼ ~EEa1;i 
 ~HH a
2;\r" �~EEa2;i 
 ~HH a

1;\r" þ~EEa1;\r" 
 ~HH a
2;i

�~EEa2;\r" 
 ~HH a
1;i: ð14aÞ

In deriving Eq. (14a) the following relations have
been used:

~EEa1;i �~kka;i ¼ 0; ð14bÞ

~EEa2;i �~kka;i ¼ 0; ð14cÞ

~EEa1;\r" �~kka;r ¼ 0; ð14dÞ
~EEa2;\r" �~kka;r ¼ 0: ð14eÞ
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where ~kka;i, ~kka;r denote the wavevectors of the inci-
dent and ‘‘reflected’’ waves in medium a.

2.4. The first couple of solutions 1 and 2

In Fig. 2, solution 1 corresponds to incident p
polarized plane waves in media a and b together
with the permittivities ea, eb and ½ec� whereas so-
lution 2 is associated to incident s polarized plane
waves in media a and b together with the permit-
tivities ea, eb and t½e�.
Making explicit the p and s polarization of the

incident waves for solutions 1 and 2 leads to:

~QQa ¼ ~QQa;p � ~QQa;s; ð15aÞ

with

~QQa;p ¼ ~EEa;p1;i 
 ~HH a
2;\r" �~EEa2;\r" 
 ~HH a;p

1;i ; ð15bÞ

~QQa;s ¼ ~EEa;s2;i 
 ~HH a
1;\r" �~EEa1;\r" 
 ~HH a;s

2;i : ð15cÞ

Let us calculate ~QQa;p. Eqs. (13a) and (13b) im-
plies that:

~EE ¼ �xl0
k2

~kk 
 ~HH : ð16Þ

According to Eqs. (16) and (15b), we get:

k2a
xl0

~QQa;p �~nny ¼ ð~HH a;p
1;i � ~HH a

2;\r"Þð~kka;i �~nnyÞ

� ð~HH a
2;\r" �~kka;iÞð~HH

a;p
1;i �~nnyÞ

� ð~HH a;p
1;i � ~HH a

2;\r"Þð~kka;r �~nnyÞ

þ ð~HH a;p
1;i �~kka;rÞð~HH a

2;\r" �~nnyÞ; ð17Þ

where ka ¼ ðx=cÞ ffiffiffiffi
ea

p
.

In Eq. (17), one has:

~HH a;p
1;i �~nny ¼ 0; ð18aÞ

~HH a;p
1;i �~kka;r ¼ 0; ð18bÞ

because ~HH a;p
1;i is along z and

~kka;r is in the plane of
incidence ðxOyÞ. Thus

~QQa;p �~nny ¼
2xl0
k2a

½~HH a;p
1;i � ~HH a;p

2;\r"�ð~kka;i �~nnyÞ; ð19Þ

where use has been made of the fact that:

~HH a;p
1;i � ~HH a

2;\r" ¼ ~HH a;p
1;i � ~HH a;p

2;\r"; ð20aÞ

~kka;r �~nny ¼ �~kka;i �~nny : ð20bÞ

Maxwell Eqs. (2a) and (2b) are invariant in the
transformation ~EE $ ~HH , e0½e� $ �l0, we thus ob-
tain (together with the substitution 1$ 2 and
p! s):

~QQa;s �~nny ¼ � 2

xl0
½~EEa;s2;i �~EE

a;s
1;\r"�ð~kka;i �~nnyÞ: ð21Þ

Eq. (21) can also be obtained by a direct calcula-
tion following the same lines as those that lead to
Eq. (19).
Finally we get (from Eqs. (15a), (19), (21),

(11a)):

~QQ �~nny ¼
2xl0
k2a

½~HH a;p
1;i � ~HH a;p

2;\r"�
�

þ 2

xl0
½~EEa;s2;i �~EE

a;s
1;\r"�

�
ð~kka;i �~nnyÞ

� 2xl0
k2b

½~HHb;p
1;i � ~HHb;p

2;\r"�
�

þ 2

xl0
½~EEb;s2;i �~EE

b;s
1;\r"�

�
ð~kkb;i �~nnyÞ: ð22aÞ

As is well known the magneto-optic effect induces
a rotation of the polarization leading for the ‘‘r’’
wave:
• to a p component for solution 2 (which corre-
sponds to s-polarized incident waves),

• to a s component for solution 1 (which corre-
sponds to p-polarized incident waves).
In Eq. (22a) this effect is expressed by the

scalar products involving the electric and mag-
netic fields. The magnetic field of the p-polarized
‘‘r’’-wave is along z but it can point either in the
same or in the opposite direction as that of the
incident magnetic field. This depends on the
magneto-optic case, polar or longitudinal, which
is considered. The same conclusion applies to the
sense of the electric field of the s-polarized ‘‘r’’-
wave with respect to that of the electric field of
the s-incident wave. Thus we introduce the no-
tations

cah ¼ �; cae ¼ �; cbh ¼ � and cbe ¼ �: ð22bÞ
It is important to realize that the � signs are not
correlated. Then Eq. (22a) writes:
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~QQ �~nny ¼ cah
2xl0
k2a

H a;p
1;i jH

a;p
2;\r"j

�

þ cae
2

xl0
Ea;s2;i jE

a;s
1;\r"j

�
ð~kka;i �~nnyÞ

� cbh
2xl0
k2b

Hb;p
1;i jH

b;p
2;\r"j

�

þ cbe
2

xl0
Eb;s2;i jE

b;s
1;\r"j

�
ð~kkb;i �~nnyÞ: ð23aÞ

It can be assumed, without loss of generality,
that the incident magnetic and electric fields are
positive. This has been done for the derivation of
Eq. (23a).
Finally use of Eqs. (13a) and (13b) yields:

~QQ �~nny ¼
2

xl0
cahE

a;p
1;i jE

a;p
2;\r"j

hn
þ caeE

a;s
2;i jE

a;s
1;\r"j

i
ð~kka;i �~nnyÞ

� cbhE
b;p
1;i jE

b;p
2;\r"j

h
þ cbeE

b;s
2;i jE

b;s
1;\r"j

i
ð~kkb;i �~nnyÞ

o
:

ð23bÞ

It is understood that in Eq. (23b) the electric
field with superscript a, b are calculated at
y ¼ 0;�e respectively (see Eqs. (10c) and (10d)).
We remind the reader that in Eq. (23b) the ‘‘r’’-

wave is a sum of a reflected and transmitted wave
(subscript r and t respectively). For example:

Ea;p2;\r" ¼ Ea;p2;r þ Ea;p2;t : ð24Þ

To pursue the calculation it is necessary to de-
fine the elements of the ½r� and ½t� matrices. For the
time being, only the off diagonal elements are
needed:

jEa;p2;r ðy ¼ 0Þj ¼ jrpsa ðt½e�ÞjE
a;s
2;i ðy ¼ 0Þ; ð25aÞ

jEa;s1;rðy ¼ 0Þj ¼ jrspa ð½e�ÞjE
a;p
1;i ðy ¼ 0Þ; ð25bÞ

jEb;p2;r ðy ¼ �eÞj ¼ jrpsb ðt½e�ÞjE
b;s
2;i ðy ¼ �eÞ; ð25cÞ

jEb;s1;rðy ¼ �eÞj ¼ jrspb ð½e�ÞjE
b;p
1;i ðy ¼ �eÞ; ð25dÞ

jEa;p2;t ðy ¼ 0Þj ¼ jtpsbaðt½e�ÞjE
b;s
2;i ðy ¼ �eÞ; ð25eÞ

jEa;s1;tðy ¼ 0Þj ¼ jtspbað½e�ÞjE
b;p
1;i ðy ¼ �eÞ; ð25fÞ

jEb;p2;t ðy ¼ �eÞj ¼ tpsabðt½e�Þ
�� ��Ea;s2;i ðy ¼ 0Þ; ð25gÞ

jEb;s1;t ðy ¼ �eÞj ¼ jtspabð½e�ÞjE
a;p
1;i ðy ¼ 0Þ: ð25hÞ

In this section, we have obtained the expression
(Eq. (23b)) of the integrand ~QQ �~nny occuring in Eq.
(10a). Using Eq. (23b) together with Eqs. (25a)–
(25h), we now derive the relations between the off-
diagonal elements of the ½r�- and ½t�-matrices.

2.4.1. Kerr effect: relation between rsp and rps

Since one deals with a linear problem, ½r� and ½t�
do not depend on the amplitude of the incident
waves. Thus we first consider the situation where
there is no incident wave in medium b. In this case
Eq. (23b) becomes:

~QQ �~nny ¼
2

xl0
cahE

a;p
1;i jE

a;p
2;r j

h
þ caeE

a;s
2;i jE

a;s
1;rj

i
ð~kka;i �~nnyÞ:

ð26aÞ
Taking Eqs. (25a) and (25b) into account we get:

~QQ �~nny ¼
2

xl0
Ea;p1;i E

a;s
2;i c

a
hjrpsa ðt½e�Þj

�

þ cae jrspa ð½e�Þj
�
~kka;i �~nny
� �

: ð26bÞ

We know from Eq. (11b) that ~QQ �~nny ¼ 0. Hence:

cahjrpsa ðt½e�Þj ¼ �cae jrspa ð½e�Þj: ð27Þ
One has to consider the four possible combi-

nations of + and ) signs entering Eq. (27) through
the c-coefficients defined in Eq. (22b). It is seen
that:

if cah; cae ¼ þ; þ or cah; cae ¼ �; � :

rpsa ðt½e�Þ ¼ rspa ð½e�Þ ¼ 0; ð28aÞ

and if cah; cae ¼ þ; � or cah; cae ¼ �;þ:
jrpsa ðt½e�Þj ¼ jrspa ð½e�Þj: ð28bÞ
Repeating the above mentioned reasoning with the
incident wave in medium b instead of medium a
leads to the same Eqs. (28a) and (28b) with a ! b.
So finally either:

rpsðt½e�Þ ¼ rspð½e�Þ ¼ 0; ð29aÞ
or

rpsðt½e�Þj j ¼ rspð½e�Þj j: ð29bÞ

In the latter case, as a consequence of the remark
at the end of Section 2.1, we obtain:
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rpsð½e�Þj j ¼ rspð½e�Þj j; ð29cÞ

for the off-diagonal elements of the reflection ma-
trix in medium a or b.
Eq. (29a) corresponds to the situation where

there is no rotation of polarization. This occurs at
least in two situations:
• when medium c exhibits no magneto-optic ef-
fect. Obviously this particular case is included
in the theory developed in this paper,

• in the transverse magneto-optic orientation.
Eq. (29c) agrees with Eqs. (54) and (55) of [5].
According to the linearity of the problem (see
Section 2.1), in the case of magneto-optical ori-
entations in the plane of incidence, i.e. hybrid
polar-longitudinal situation, rpsðt½e�Þ and rspð½e�Þ
are linear combinations of off-diagonal elements of
½r� corresponding to the polar and longitudinal
orientations for which Eq. (29c) applies. Thus in
the general case no relation can be found between
rpsð½e�Þ and rspð½e�Þ. This is in agreement with Eqs.
(5) and (7) of [7], with Eqs. (21) and (23) of [8] and
with Eq. (7) of [9].
So according to Eqs. (29a)–(29c) the off-diago-

nal elements of the reflection matrix are either null
or have the same absolute value.

2.4.2. Faraday effect: relation between tsp and tps

As a result of Eqs. (11b), (23b) and (27) written
in medium a and b (for medium b let a! b), we
get:

2

xl0
cahE

a;p
1;i jE

a;p
2;t j

hn
þ caeE

a;s
2;i jE

a;s
1;t j

i
ð~kka;i �~nnyÞ

� cbhE
b;p
1;i jE

b;p
2;t j

h
þ cbeE

b;s
2;i jE

b;s
1;t j

i
ð~kkb;i �~nnyÞ

o

¼ 0: ð30aÞ

Use of Eqs. (25e)–(25h) yields:

Ea;p1;i E
b;s
2;i cahjt

ps
bajð~kka;i �~nnyÞ

h
� cbe jt

sp
abjð~kkb;i �~nnyÞ

i

þ Eb;p1;i E
a;s
2;i cae jt

sp
bajð~kka;i �~nnyÞ

h
� cbhjt

ps
abjð~kkb;i:~nnyÞ

i
¼ 0:

ð30bÞ

The argument of linearity, previously invoked,
allows looking for solutions corresponding to:

Eb;p1;i ¼ 0 or Ea;s2;i ¼ 0) cah tpsbaðt½e�Þ
�� ��ka cos ha

¼ �cbe tspabð½e�Þ
�� ��kb cos hb; ð31aÞ

or to

Ea;p1;i ¼ 0 or Eb;s2;i ¼ 0) cae t
sp
bað½e�Þ

�� ��ka cos ha
¼ �cbh tpsabðt½e�Þ

�� ��kb cos hb: ð31bÞ

Since ka cos ha > 0 and kb cos hb > 0, Eq. (31a)
gives:
• if cah; c

b
e ¼ þ;þ or cah; c

b
e ¼ �;�:

tpsbaðt½e�Þ ¼ tspabð½e�Þ ¼ 0; ð32aÞ

• if cah; c
b
e ¼ þ;� or cah; c

b
e ¼ �;þ:

jtpsbaðt½e�Þjka cos ha ¼ jtspabð½e�Þjkb cos hb: ð32bÞ
Eq. (31b) leads to:
• if cae ; c

b
h ¼ þ;þ or cae ; cbh ¼ �;� :

tspbað½e�Þ ¼ tpsabðt½e�Þ ¼ 0; ð33aÞ
• if cae ; cbh ¼ þ;� or cae ; c

b
h ¼ �;þ:

jtspbað½e�Þjka cos ha ¼ jtpsabðt½e�Þjkb cos hb: ð33bÞ
Eqs. (32a) and (33a) correspond to non-mag-

neto-optic systems or to the transverse magneto-
optic orientation. Notice that the choice of signs
leading to Eqs. (33a) and (33b) is independent
from that giving Eqs. (32a) and (32b). In particu-
lar, as far as the Lorentz reciprocity theorem is
concerned, a possible EM solution is a solution for
which the couple of Eqs. (32a) and (33b), or Eqs.
(32b) and (33a), applies. But the Lorentz reci-
procity theorem does not tell us how the magneto-
optic system has to be designed in order to exhibit
this property.
According to the remark at the end of Section

2.1 Eqs. (32b), (33b) are valid without considering
t½e�.
Notice that the elements of the ½r� and ½t� ma-

trices involved in Eqs. (29a)–(29c), (32a), (32b) and
(33a), (33b) are r and t-coefficients for the electric
field.
Eqs. (32a) and (32b), (33a) and (33b) provide

the desired relations between the off-diagonal ele-
ments of the transmission matrix: these elements
are null (Eqs. (32a) and (33a)) or are linked by
(32b) and (33b).
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2.5. The second couple of solutions 1 and 2

The goal of this second choice is to derive re-
lations bringing into play the diagonal elements of
½t�. The two solutions are depicted in Fig. 3: solu-
tion 1 corresponds to an incident field in medium a
whereas for solution 2 the incident field is in me-
dium b. We consider successively, the two situa-
tions in which the two incident waves have the
same polarization: p for solutions 1 and 2, s for
solutions 1 and 2.
From Eq. (14a)–(14e) we get:

~QQa ¼ ~EEa1;i 
 ~HH a
2;t �~EEa2;t 
 ~HH a

1;i; ð34aÞ

~QQb ¼ ~EEb1;t 
 ~HHb
2;i �~EEb2;i 
 ~HHb

1;t: ð34bÞ

2.5.1. p-Polarized incident fields
Eq. (34a) yields:

~QQa ¼ ~EEa;p1;i 
 ~HH a
2;t �~EEa2;t 
 ~HH a;p

1;i : ð35Þ

Use of Eqs. (16), (18a), (18b) and (20b) with the
substitution r ! t leads to:

~QQa �~nny ¼
2xl0
k2a

½H a;p
1;i;zH

a;p
2;t;z�ð~kka;i �~nnyÞ; ð36aÞ

~QQb �~nny ¼ � 2xl0
k2b

½Hb;p
2;i;zH

b;p
1;t;z� ~kkb;i �~nny

� �
: ð36bÞ

Eqs. (11b) and (36a), (36b) give:

1

k2a
½H a;p

1;i;zH
a;p
2;t;z�ð~kka;i �~nnyÞ þ

1

k2b
½Hb;p

2;i;zH
b;p
1;t;z�ð~kkb;i �~nnyÞ ¼ 0:

ð37Þ
Defining new transmission coefficients by

H a;p
2;t;zðy ¼ 0Þ ¼ tppbaðt½e�ÞH

b;p
2;i;zðy ¼ �eÞ; ð38aÞ

Hb;p
1;t;zðy ¼ �eÞ ¼ tppabð½e�ÞH

a;p
1;i;zðy ¼ 0Þ; ð38bÞ

Eqs. (37) and (38a), (38b) give:

1

ka
tppbaðt½e�Þ cos ha ¼

1

kb
tppabð½e�Þ cos hb: ð39Þ

Contrary to what happens in Eqs. (32a), (32b) and
(33a), (33b), the t-elements in Eq. (39) are trans-
mission coefficients for the magnetic field.

2.5.2. s-Polarized incident fields
Making the transformation ~EE $ ~HH , e0½e� $

�l0, which leaves Maxwell equations invariant,
Eqs. (36a) and (36b) becomes (together with
s! p):

~QQa �~nny ¼
�2
xl0

½Ea;s1;i;zE
a;s
2;t;z�ð~kka;i �~nnyÞ; ð40aÞ

~QQb �~nny ¼
2

xl0
½Eb;s2;i;zE

b;s
1;t;z�ð~kkb;i:~nnyÞ: ð40bÞ

We can again define new transmission coefficients
by:

Fig. 3. Solutions 1 and 2 yielding the properties of the diagonal elements of ½t�.
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Ea;s2;t;zðy ¼ 0Þ ¼ tssbaðt½e�ÞE
b;s
2;i;zðy ¼ �eÞ; ð41aÞ

Eb;s1;t;zðy ¼ �eÞ ¼ tssabð½e�ÞE
a;s
1;i;zðy ¼ 0Þ: ð41bÞ

Use of Eqs. (11b), (40a), (40b), (41a) and (41b)
leads to:

tssbaðt½e�Þka cos ha ¼ tssabð½e�Þkb cos hb: ð42Þ

The t-elements in Eq. (42) are transmission coef-
ficients for the electric field.
From the remark at the end of Section 2.1, it is

seen that Eqs. (39) and (42) can be rewritten as:

1

ka
tppbað½e�Þ cos ha ¼ � 1

kb
tppabð½e�Þ cos hb; ð43aÞ

tssbað½e�Þka cos ha ¼ �tssabð½e�Þkb cos hb: ð43bÞ
Eqs. (43a) and (43b) give the relation between the
diagonal elements of the transmission matrix for
p- and s-polarizations, respectively.

3. Numerical results

The magneto-optic system of interest is repre-
sented in Fig. 4. Using a computer code which

makes a rigorous EM analysis of the device in
Fig. 4, we have obtained the numerical values of
the elements of the ½r�- and ½t�-matrices for polar
and longitudinal orientations. This allows check-
ing Eqs. (29b), (32b), (33b), (39) and (42). These
values are reported in Appendix B: it is seen that
the agreement is excellent since it is better than
10�13.
A careful examination of the numerical values

reported in Eqs. (B.4a), (B.4b), (B.9a), (B.9b) on
the one hand and Eqs. (B.5a) and (B.5b), (B.10a)
and (B.10b) on the other hand show that the di-
agonal elements of the ½t�-matrix very slightly de-
pend on the magneto-optical orientation (of the
order of 10�4). This is quite natural when we look
at the rigorous propagation Eq. (5a), while it is
surprising when Eq. (5d) is considered. Indeed this
slight dependence gives an order of magnitude of
the error introduced by the approximation stated
in Eq. (5c). This error is negligible as far as the EM
field map along y is unchanged by the introduction
of the extra-diagonal terms end created by the static
magnetic field. This requires that the magneto-
optical effect induces a variation of the index of
refraction which remains small compared to the
index steps at y ¼ 0;�e.

4. Conclusion

In this paper, we have derived the relations
fulfilled by the elements of the ½r�- and ½t�-matrices.
For the sake of convenience, we summarize these
relations:

jrpsðt½e�Þj ¼ jrspð½e�Þj; ð44aÞ

jtpsbaðt½e�Þjka cos ha ¼ jtspabð½e�Þjkb cos hb; ð44bÞ

jtspbað½e�Þjka cos ha ¼ jtpsabðt½e�Þjkb cos hb; ð44cÞ

1

ka
tppbaðt½e�Þ cos ha ¼

1

kb
tppabð½e�Þ cos hb; ð44dÞ

tssbaðt½e�Þka cos ha ¼ tssabð½e�Þkb cos hb: ð44eÞ

Eqs. (44a)–(44e) are general in the sense
that they apply to any planar multilayer and/or

Fig. 4. The magneto-optic system used for the numerical cal-

culations. Wavelength: 647 nm, ha ¼ 30�, hb is derived from

Eq. (8), e ¼ 10 nm; ½eCo� : fed ¼ �11:5þ 18:3i; end ¼ 0:65ig,
eb ¼ 2:25.
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gradient permittivity magneto-optic device. Con-
cerning the off-diagonal terms, we have found
that they are either null or linked through their
modulus: the relation between the off-diagonal
coefficients depend on the structure at hand but
whatever the system may be Eqs. (29a)–(29c),
(32a), (32b) and (33a), (33b) are fulfilled. The
Lorentz reciprocity theorem does not allow to get
more specific relations. In other words, this the-
orem yields possible relations but does not tell us
which magneto-optic device and which magneto-
optical orientation will yield a given type of re-
lation between the off-diagonal terms. An imme-
diate application of such relations is that they
allow to check computer codes developed in this
domain. Another interest concerns the physics of
this field since the results obtained in this paper
point to general properties of magneto-optic sys-
tems.

Appendix A. Demonstration of Eq. (5a)

For the sake of convenience we rewrite Maxwell
in medium c:

curl ~EE ¼ þixl0~HH ; ðA:1aÞ

curl ~HH ¼ �ixe0½ec�~EE: ðA:1bÞ

Eqs. (A.1a) and (A.1b) give:

curl curl ~EE ¼ k20 ½ec�~EE ðA:2aÞ

with

k0 ¼
x
c
: ðA:2bÞ

Taking into account that

½ecðyÞ� ¼ ½edðyÞ� þ ½endðyÞ�; ðA:3aÞ

Eq. (A.2a) can be rewritten as

D~EE þ k20edðyÞ~EE ¼ þgraddiv ~EE � k20 ½endðyÞ�~EE;
ðA:3bÞ

using the fact that ½edðyÞ� is diagonal with all its
elements equal.

Besides Eq. (A.1b) shows that

div ecðyÞ½ �~EE ¼ 0: ðA:4aÞ

But

div½ecðyÞ�~EE ¼ edðyÞdiv~EE þ~EE � gradedðyÞ
þ div½endðyÞ�~EE: ðA:4bÞ

Use of Eqs. (A.4a) and (A.4b) shows that Eq.
(A.3b) writes

D~EE þ k20edðyÞ~EE þ grad Ey
1

edðyÞ
ded
dy

� 

¼

�grad 1

edðyÞ
div½endðyÞ�~EE

� �
� k20 ½endðyÞ�~EE: ðA:5Þ

Appendix B. Check of the relations between the

elements of the ½r� and ½t� matrices for polar and

longitudinal magneto-optical orientations

The system of interest is represented Fig. 4.

B.1. Polar magneto-optical orientation

(a) off-diagonal reflection coefficient at y ¼ 0:

rspð½e�Þ ¼ 0:0048956690932201

� i0:0040829115856460; ðB:1aÞ

rpsðt½e�Þ ¼ �0:0048956690932201
þ i0:0040829115856460: ðB:1bÞ

(b) off-diagonal transmission coefficients:

tpsbaðt½e�Þka cos ha ¼ 0:0773827045319791

� i0:0418363068465491 lm�1;

ðB:2aÞ

tspabð½e�Þkb cos hb ¼ 0:0773827045319792

� i0:0418363068465492 lm�1;

ðB:2bÞ
tspbað½e�Þka cos ha ¼ 0:0708921304202896

� i0:0388047181599400 lm�1;

ðB:3aÞ
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tpsabðt½e�Þkb cos hb ¼ 0:0708921304202905

�i0:0388047181599403 lm�1:

ðB:3bÞ
(c) diagonal transmission coefficients:

1

ka
tppbaðt½e�Þ cos ha ¼ 0:0426595551666800

�i0:0059543524262004 lm;

ðB:4aÞ
1

kb
tppabð½e�Þ cos hb ¼ 0:0426595551666800

� i0:0059543524262004 lm;

ðB:4bÞ
tssbaðt½e�Þka cos ha ¼ 5:4166590488384081

� i1:0059793811370530 lm�1;

ðB:5aÞ
tssabð½e�Þkb cos hb ¼ 5:4166590488384081

� i1:0059793811370530 lm�1:

ðB:5bÞ

B.2. Longitudinal magneto-optical orientation

(a) off-diagonal reflection coefficients at y ¼ 0:

rspð½e�Þ ¼ �0:0003084950261933
� i0:0002141972676732; ðB:6aÞ

rpsðt½e�Þ ¼ �0:0003084950261932
� i0:0002141972676733: ðB:6bÞ

(b) off-diagonal transmission coefficients:

tpsbaðt½e�Þka cos ha ¼ � 0:003440257989651

� i0:0037205984007549 lm�1;

ðB:7aÞ
tspabð½e�Þkb cos hb ¼ � 0:0034402527989649

� i0:0037205984007539 lm�1;

ðB:7bÞ
tspbað½e�Þka cos ha ¼ � 0:0025529349717366

� i0:0029115821280467 lm�1;

ðB:8aÞ

tpsabðt½e�Þkb cos hb ¼ 0:0025529349717376
� i0:0029115821280478 lm�1:

ðB:8bÞ
(c) diagonal transmission coefficients:

1

ka
tppbaðt½e�Þ cos ha ¼ 0:0426660484068324

� i0:0059604484994219 lm;

ðB:9aÞ
1

kb
tppabð½e�Þ cos hb ¼ 0:0426660484068324

� i0:0059604484994219 lm;

ðB:9bÞ
tssbaðt½e�Þka cos ha ¼ 5:4162931963705452

� i1:0045393835615539 lm�1;

ðB:10aÞ
tssabð½e�Þkb cos hb ¼ 5:4162931963705461

� i1:0045393835615533 lm�1:

ðB:10bÞ
The numerical values in Eqs. (B.1a), (B.1b) and
(B.6a), (B.6b) are a check of Eq. (29b).
Concerning the coefficients of the transmission

matrix, it is seen that the agreement is excellent
between:
• the numerical values in Eqs. (B.2a), (B.2b),
(B.7a), (B.7b) and Eq. (32b),

• the numerical values in Eqs. (B.3a), (B.3b),
(B.8a), (B.8b) and Eq. (33b),

• the numerical values in Eqs. (B.4a), (B.4b),
(B.9a), (B.9b) and Eq. (39),

• the numerical values in Eqs. (B.5a), (B.5b),
(B.10a), (B.10b) and Eq. (42).
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