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nhanced transmission due to nonplasmon
esonances in one- and two-dimensional gratings

vgeny Popov, Stefan Enoch, Gérard Tayeb, Michel Nevière,
oris Gralak, and Nicolas Bonod

Enhanced transmission through subwavelength slit gratings and hole arrays is studied in view of its
application in the far-infrared and microwave domains. Because for perfectly conducting gratings,
plasmon resonances are not expected to produce an enhanced transmission, other kinds of resonance,
such as Fabry–Perot, waveguide-mode, and cavity-mode resonances, are studied. The possibility of
reaching 100% transmittivity for some particular wavelengths is established when two superimposed
identical gratings are used while each of them transmits approximately 1% off resonance. A similar
transmission is obtained with hole arrays. The study of the field map inside the groove region allows our
establishing the nature of the resonance, that is involved. Comparison of the bandwidth with respect to
the wavelength or incidence given by various kinds of resonance is presented. © 2004 Optical Society
of America
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. Introduction

ince the famous study of R. Wood,1 it is well known
hat electromagnetic effects can play a key role in the
iffraction behavior of gratings. Fano2 was the first
o propose that some anomalies could be explained by
urface waves �nowadays called plasmons� along the
etallic–dielectric interface. Similar effects are ob-

erved when guided waves propagate along dielectric
aveguides. Corrugated waveguides have been ex-

ensively studied since the 1970’s as grating couplers
n integrated optics.3 Later, they gave rise to the
omain called, in the 1990’s, subwavelength gratings,
haracterized by the fact that only the specular or-
ers can propagate in the cladding and the sub-
trate.4 These gratings have a remarkable property
o have reflection and transmission growing from 0%
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herche associeé au Centre National de Recherche Scientifique
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o 100% within a fraction of the incident wavelength
r angle-of-incidence variation.
In 1997, Ebbesen et al.5 observed an enhanced

ransmission through a metallic film pierced with
eriodically arranged holes. Although the holes in-
roduce a channel for light propagation more efficient
han the simple tunneling through the continuous
lm,6 the enhanced transmission is predominantly
ue to the plasmon excitation on one or both film
urfaces, so that the effect could also be observed at
orrugated surfaces having a constant thickness.7
t is necessary to point out that hole arrays signifi-
antly differ from slots �or grid gratings� because the
atter can support a TEM mode that propagates with
mall decay through the grating thickness, whereas
he former cannot support it. The existence of this
EM mode explains the drastic difference in behavior
etween TE- �electric field vector parallel to the slit
irection� and TM-polarized light diffraction by me-
allic grids. Whereas TM-polarized light is easily
ransmitted, TE-polarized light is reflected back-
ard, thus the use of such gratings as grid
olarizers.8–10 Hole arrays provide a mixed re-
ponse because the TEM mode does not exist, and, for
ubwavelength periods, all the modes inside the hol-
ow �hole� guide are evanescent. Thus the nonreso-
ant �background� transmission is relatively low and

s significantly enhanced only in the spectral and
ngular regions in which surface plasmons are ex-
ited along the metallic surface. This excitation be-
10 February 2004 � Vol. 43, No. 5 � APPLIED OPTICS 999
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omes possible owing to the grating periodicity �one-
imensional or two-dimensional�, which adds one or
ore grating vectors to the wave-vector component

arallel to the grating surface.
A discussion has recently arisen11 concerning the

xistence of enhanced transmission in metallic grat-
ngs having �almost� infinite conductivity, similar to
he effect observed by Ebbesen. Whereas for a one-
imensional grating the fundamental TEM mode en-
ures enough transmission in TM polarization even
ithout plasmon effects,12 for hole arrays or crossed
rids, resonances are necessary to enhance the oth-
rwise too-weak transmission. However, plasmons
long the subwavelength almost perfectly conducting
ratings working in specular order cannot produce
isible effects in the reflectivity.13 To observe their
ffect, it is necessary to introduce losses, absorption
r diffraction.11 However, losses in most cases are
ot desirable. Thus the natural question that arises

s whether it is possible to use other types of electro-
agnetic resonance, rather than the surface-

olariton-plasmon excitation, to obtain enhanced
ransmission in perfectly conducting crossed grids or
ole-array gratings. Another question concerns the

ntensity of the enhancement in TE polarization for
ne-dimensional gratings.
Our aim in this paper is to analyze the role of other

nown resonance phenomena for the transmission
nhancement in otherwise weakly transmitting grat-
ngs. These will be the Fabry–Perot resonances, the
aveguide-mode excitation, and the cavity modes.

n some cases it will be difficult to distinguish among
hese three phenomena, owing to their gradual mu-
ation from one into another. To determine which is
hich, we study the electric field map distribution

nside the grating structure. The possibility of ob-
aining enhanced transmission by use of a double-
rating structure has been known for quite a long
ime.14 In fact, the basic principle of Fabry–Perot
esonances lies in the possibility to constructively
nterfere light transmitted and reflected by two con-
ecutive structures. Provided that symmetry with
espect to a horizontal plane �Fig. 1� is fulfilled, one
an expect a 100% maximum of transmission15 of the
wo combined gratings, even if the transmission of
ach of them is quite small. Thus, if a single grating
ransmits less than 1%, adding an identical structure
ot only does not always diminish the transmission

ig. 1. Schematic representation of a double-grating structure
onsisting of two identical grid gratings.
000 APPLIED OPTICS � Vol. 43, No. 5 � 10 February 2004
00 times more, but, at a given distance or for a
articular wavelength, it increases it to 100% �Fig.
�a��. As already discussed, owing to the existence
f surface plasmon resonance, even a single-grating
tructure could totally transmit TM polarization �Fig.
�b��. To eliminate the possible �if any� influence of
lasmon surface waves, we first deal with a one-
imensional grating structure in TE polarization, for
hich plasmons cannot propagate. Next we go to

wo-dimensional structures and are able to obtain
imilar behavior.

. One-Dimensional Grating in TE Polarization

t first, we consider a structure that will be called a
rating–waveguide configuration �Fig. 3�a��. This is
one-dimensional lamellar grating consisting of two

ows of metallic slits situated at the two faces of a
ontinuous dielectric film with refractive index n2 �
.47. The outermost media have refractive index
� 1. In what follows we assume a TE-polarized

electric field parallel to the grooves� plane monochro-

ig. 2. �a� Transmission through a single or a double-grating
tructure. d � 1, c � 0.5, t � 0.5, lamellae thickness is 0.5, and
efractive index nL � i250; all units are in centimeters. �b� Trans-
ission through a single grating in TE or TM polarization �same

arameters as in �a��.
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atic wave under normal incidence with respect to
he grating plane. The wavelength is � � 1.5 cm,
nd the period is d � 1 cm, so that only the specular
rders propagate in the cladding and the substrate.
As already discussed at the end of Section 1, a

ingle-row slit grating has a quite weak transmission
nder the chosen conditions. Adding a second row

ntroduces interference phenomena that could lead to
lmost total transmission at some set of optogeo-
etrical parameters of the system. Figure 4 repre-

ents the transmission of the grating of Fig. 3�a� as a
unction of the slit width c and the middle-layer thick-
ess t. The lamellae thickness is t1 � 0.1 cm. La-
ellae are taken to be lossless with the optical index

qual to nL � i250. The calculations are made by
se of the rigorous coupled-wave method16 and con-
rmed in the limit of perfectly conducting lossless

ig. 3. Schematic representation of two types of a one-
imensional slit grating: �a� a double grating with a continuous
ielectric layer in the middle, called the grating–waveguide con-
guration, and �b� a grating–cavity configuration.

ig. 4. Transmission as a function of the lamellae width �c� and
iddle-layer thickness �t� in centimeters for the grating repre-

ented in Fig. 3�a�.
aterial by use of the rigorous modal method.17 As
L 3 i�, the system response varies insignificantly,
rovided that the lamellae dimensions are large
nough so that their optical thickness could be con-
idered much larger than the wavelength. This is
ot the case when the lamellae are too thin.18 For
hat reason, we will draw the curves for c � 0.1 for
ig. 3�b�. On the other hand, when c 3 d, the res-
nances become too thin to be observed; thus we will
imit the range of c to c 	 0.8.

Although the overall background values of trans-
ission are quite low, there are three distinct regions

n which the transmission reaches 100%. The three
urves are numbered from 1 to 3 in the figure. Re-
ions 1 and 2 are wider for thinner lamellae �c small�.
et us study in more detail the limit when the lamel-

ae width tends toward the period, c 3 d; i.e., the
esonator is completely closed. We recall that, when
he mth mode of a slab is excited in TE polarization
hrough the pth order of the grating, we obtain the
ell-known formula

�2
n2

� �2

� �p2


d �2

� �m


t �2

. (1)

he thicknesses corresponding to 100% transmission
hen tend to the following values:

curve 1: t 3 0.216 cm such that

2


�
n2 t � 
 , (2)

curve 2: t 3 0.432 cm such that

2


�
n2 t � 2
 , (3)

curve 3: t 3 0.240 cm such that

2


� �n2
2 � ��

d�
2�1�2

t � 
 . (4)

he first two thickness values correspond to the first
wo waveguide modes of the hollow metallic
aveguide made of metallic plates surrounding the
ielectric layer. The third thickness corresponds to
he first waveguide mode excited through the first
rating order propagating inside the dielectric layer.
The other limit c 3 0 corresponds to a completely

pen dielectric waveguide without metallic lamellae.
s already said, this limit has to be numerically

aken rather carefully18; it is important to have the
imit nLc3 0 fulfilled. In that limit, the thicknesses
orresponding to curves 1 and 2 tend toward the val-
es giving the Fabry–Perot resonances for a bare
ielectric layer �curve 1 tends toward zero thickness,
hich corresponds to 100% transmission�, whereas

he resonance thickness of the third curve tends to-
ard the value 0.052 cm, which provides excitation of

he fundamental mode of the corresponding dielectric
aveguide through the first diffraction order. Table
10 February 2004 � Vol. 43, No. 5 � APPLIED OPTICS 1001
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presents the change of the resonance thickness t
orresponding to point 3a of Fig. 4, when the imagi-
ary part of nL gradually tends toward zero, keeping
constant. As one can observe, the value of t tends

oward 0.052.
To better illustrate the similarities and the differ-

nces between the different curves, we present the
istribution of the electric field inside the grating
egion for several characteristic points along the dif-
erent curves in Fig. 4. Figures 5�a�–5�c� give the
lectric field ��Ez�� for the three points 1a, 2a, and 1b,
espectively. The modulus of the incident electric

Table 1. Values of the Resonant Thickness of the Dielectric Layer
Corresponding to Curve 3 of Fig. 4 When nLc 3 0

nL abs�nLc�
Resonant Thickness

t �cm�

0 � i250 5 0.1072
0 � i100 2 0.1065
0 � i50 1 0.1037
0 � i20 0.4 0.0943
0 � i10 0.2 0.0786
0 � i5 0.1 0.0628
0 � i2 0.04 0.0547
l � i0 0.02 0.0526

ig. 5. Electric field maps corresponding to different working
oints of Fig. 4: �a� point 1a with c � 0.02, �b� point 2a with c �
.2, and �c� point 1b with c � 0.7.
002 APPLIED OPTICS � Vol. 43, No. 5 � 10 February 2004
eld is taken equal to 1. At points 1a and 2a, the
eld is weakly depending on the x coordinate and
resents a single �for point 1a� or a double �for point
a� resonance in the y direction. This behavior is
ypical of the Fabry–Perot resonances, which are
ompletely x independent when c � 0. Going to the
ight-hand side of Fig. 4, point 1b, one can observe in
ig. 5�c� that the field is concentrated in the region
nder the lamellae openings and rapidly decreases
etween them. In contrast, curve 3 of Fig. 4 pre-
ents a completely different field behavior. Figures
�a�–6�d� give the field map distribution for the sev-
ral different points of curve 3 with a gradual in-

ig. 6. Electric field maps corresponding to different working
oints along curve 3 of Fig. 4: �a� point 3a with c � 0.02, �b� point
b with c � 0.1, �c� point 3c with c � 0.3, and �d� point 3d with c �
.7.



c
c
m
a
w
t
n
i
fi
a
fi
�
t
l
e
o
A
6
t
l
s
t
i

b
s
t
w
m
fi
w
t
o

t
s
i
b
a
i
c
i
0

t
g

i
w
t
F
d
t
h
p
5
o
C
h
t

s
p
3
fi
t
t
p
F
t
s
6
F
a
l
t
c
s

o
o
c
t
a
a
d
b
w
n
r

F
s
o

F
m
s

F
o

rease of the lamellae width. Figure 6�a�,
orresponding to point 3a of curve 3, exhibits three
axima along x and a single maximum along y. As

lready mentioned, this point corresponds to a
aveguide-mode excitation that uses the first diffrac-

ion order of the grating. As far as the incidence is
ormal, simultaneous excitation of modes propagat-

ng in opposite directions of the x axis occurs, and the
eld distribution corresponds to a standing wave
long x. When the lamellae width c is increased, the
eld distribution remains qualitatively the same

standing wave in the x direction�; however, in con-
rast to Fig. 5, the field intensity between the metallic
amellae remains high, reflecting the fact that the
nhanced resonant transmission is due to excitation
f waveguide modes propagating in the �x direction.
s the groove opening reduces gradually �see Fig.
�d��, the dielectric waveguide mode is gradually
ransformed into a mode of the corresponding metal-
ic waveguide filled with the dielectric. The corre-
ponding spectral and angular dependencies of the
ransmission will be analyzed later when a compar-
son is done with the cavity resonances.

Second, to observe the differences and similarities
etween waveguide and cavity modes, we analyze the
tructure presented in Fig. 3�b�, which will be called
he grating–cavity configuration. The difference
ith the previous case is the existence of a vertical
etallic wall 0.1 cm thick, which serves to isolate the
eld inside the adjacent periods. This prohibits
aveguide-mode propagation but permits the exis-

ence of new types of resonance, namely, cavity res-
nances.
The transmission of the structure as a function of

he lamellae width and the cavity �filled with the
ame dielectric� height is presented in Fig. 7. Sim-
lar to Fig. 4, several well-distinguished regions can
e observed, with the transmission reaching 100%
long four curves. Some of these regions are wider
n their t dependence �curves 1 and 2�, whereas
urves 3 and 4 are rather thin, so thin that it is
mpossible to follow curve 4 for values of c less than
.25. The starting lamellae width is 0.1 cm because

ig. 7. Transmission as a function of the lamellae width �c� and
iddle-layer thickness �t� in centimeters for the grating repre-

ented in Fig. 3�b�.
his is the thickness of the walls that separate the
rooves.
The similarities between the transmission behav-

ors for open- and close-groove gratings observed
hen we compare Fig. 4 with Fig. 7 are not acciden-

al. Curves 1 and 2 in the two figures are due to
abry–Perot resonances, presenting maxima in the y
irection and having weak dependence in the x direc-
ion for narrow lamellae. Thus results not reported
ere have shown the same field distributions for
oints 1A and 2A of Fig. 7 as those reported in Figs.
�a� and 5�b�. The same conclusion is valid at the
ther end �c large, point 1B� of curve 1 of Fig. 7.
omparing Fig. 5�c� with Fig. 8, we see that the be-
avior of the field distribution remains the same as
hat of point 1b of Fig. 4.

Although the grating–cavity configuration under
tudy �Fig. 3�b�� does not allow waveguide modes to
ropagate, in contrast to the system presented in Fig.
�a�, there exists for the grating–cavity configuration
eld distributions that allow for 100% resonant
ransmission, similar to the waveguide-mode excita-
ion allowed in the system shown in Fig. 3�a�. This
henomenon can be observed along curves 3 and 4 of
ig. 7. Figure 9 presents the electric field maps for
he three points 3A, 3B, and 4B, which are quite
imilar to the field distributions presented in Figs.
�a�–6�c�. However, the main difference is that in
ig. 9 we observe the excitation of cavity resonances,
cavity formed by the vertical and horizontal metal-

ic walls. The similarity with Fig. 6 is due to the fact
hat the waveguide modes are excited in normal in-
idence and thus present a standing-wave behavior
imilar to the cavity modes.
Increasing the horizontal lamellae width, one can

bserve a gradual transition between a resonator
pen in the vertical direction �Fig. 9�a�� to an almost
losed resonator inside the cavity �Fig. 9�c��. Al-
hough the field distribution along curve 3 of Fig. 4
nd curves 3 and 4 of Fig. 7 are quite similar, as well
s their dependence on the lamellae width c and the
ielectric region thickness t, the angular and spectral
ehaviors could be quite different in the two cases, as
ell as when compared with the Fabry–Perot reso-
ances. This is analyzed in what follows in the cur-
ent section.

When the left-hand side of curves 1 and 2 in both
igs. 4 and 7 are considered, the enhanced transmis-
ion is due to Fabry–Perot resonances in �almost�
pen resonators. These are characterized by rela-

ig. 8. Electric field maps corresponding to the working point 1B
f Fig. 7.
10 February 2004 � Vol. 43, No. 5 � APPLIED OPTICS 1003
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ively large spectral and angular dependences.
hen the groove opening is reduced �increasing c�,

he resonator becomes more closed. How does this
nfluence the spectral transmission curve? Figure
0�a� shows the spectral variation of the transmission
n that case, with a spectral width at a half-height for
oth working points 1b and 1B of the order of 0.02 cm
��� � 1.3 � 10�2�, which is quite large; when com-
ared further with the waveguide or cavity-mode ex-
itation, it will be shown that closing the resonator
educes the spectral bandwidth. Anyway, the angu-
ar response for the Fabry–Perot resonance remains
lmost insensitive with respect to the incident angle,
t least in the region in which only the specular or-
ers of the grating propagate �Fig. 10�b�� �angle 	 30
eg�.
This behavior has to be compared with the
aveguide-mode excitation process for the same la-
ellae width, presented in Fig. 11 for the working

oint 3d. The spectral width of the transmission
aximum �Fig. 11�a�� is less than 0.0005 cm ���� �

.10�4�. The angular curve is also quite narrow
Fig. 11�b��, reflecting the fact that the waveguide
ode is excited through the �1st diffraction orders of

he gratings; i.e., the resonant incident angle � is

ig. 9. Electric field maps corresponding to different working
oints along curves 3 and 4 of Fig. 7: �a� point 3A, �b� point 3B,
nd �c� point 4B.
i

004 APPLIED OPTICS � Vol. 43, No. 5 � 10 February 2004
inked to the waveguide-mode propagation constant
n the x direction �g by the grating equation

sin �i � �g

�

2

�

�

d
. (5)

he narrower the resonance in �, the narrower in �i,
hich creates great problems for using the resonant
aveguide-mode excitation for spectral filtering:
arrow filters require well-collimated incident light,
requirement that is quite often difficult to meet.
Cavity resonances could provide a simple solution

o this problem. Closing the cavity by decreasing
he opening will reduce the coupling with the incident
ight and will increase the finesse in � and thus will
iminish the width of the spectral maximum to a
esired value. However, in contrast to what hap-
ens during the waveguide-mode excitation, in which
he angular dependence also depends on the spectral
idth through Eq. �5�, the cavity resonance could be
uite thin in � and quite large in �i. This can be
nderstood by taking account of the fact that the
avity resonance depends on the optogeometrical pa-
ameters �cavity dimensions, optical index, and
avelength� so that the angle of incidence plays a
uch smaller role because its variation changes only

ig. 10. Transmission corresponding to working points 1b of Fig.
and 1B of Fig. 7: �a� as a function of the wavelength and �b� as
function of the angle of incidence.
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he strength of resonance excitation and not the res-
nance characteristics themselves. And, indeed, un-
er conditions similar to those of Fig. 11, Fig. 12
resents the spectral and angular dependences of the
ransmission close to the working point 4B of Fig. 7,
.e., for a closed resonance. As can be observed, us-
ng excitation of cavity resonances instead of
aveguide modes, one can preserve a very narrow

pectral resonance ���� � 3.10�4 in Fig. 12�a�� while
reserving the spectral position of the maximum
ithin a large angular interval �Fig. 12�b��. Al-

hough the system is asymmetrical with respect to
he vertical y–z plane �see Fig. 3�b��, the angular
ependence is almost symmetrical with respect to the
ormal incidence because the field map inside the
avity is also almost symmetrical �see Fig. 9�c��.

Another proof that cavity resonances are mainly
uided by the cavity dimensions and not by the exci-
ation conditions, in contrast to the waveguide-mode
xcitation governed by Eq. �5�, is presented in Fig. 13,
n which the spectral response close to working points
B �Fig. 13�b�� and 3b �Fig. 13�c�� is analyzed when
he groove period is increased while the cavity dimen-
ions are preserved �Fig. 13�a��. An increase of 10%

ig. 11. Transmission corresponding to the working point 3d of
ig. 4: �a� as a function of the wavelength and �b� as a function of
he angle of incidence.
f the period does not significantly modify the spec-
ral response of the cavity resonance �Fig. 13�b��,
hereas only a 1% change of the period when a
aveguide mode is excited through Eq. �5� leads to a

ignificant shift of the peak location in the spectral
omain �Fig. 13�c��.

. Two-Dimensional Grating

he aim of this section is to show how the ideas
eveloped in Section 2 in the simpler case of one-
imensional gratings can be extended to two-
imensional gratings in order to suppress the
ensitivity to the polarization of the incident light.
wo kinds of grating will be considered: the wood-
ile structure and the square-grid grating.
The first one is the so-called woodpile structure,
ell known as being one of the most promising struc-

ures for building photonic crystals.19 Figure 14 de-
icts the four-layer woodpile structure; the
arameters are given in the figure caption. In this
ase it can be proved that the transmission is insen-
itive to the polarization by use of the reciprocity
heorem and symmetry. Indeed, let us consider the
ncident field corresponding to case �a� in Fig. 14.

ig. 12. Spectral �12a� and angular �12b� dependences of trans-
ission at the working point 4B of Fig. 7.
10 February 2004 � Vol. 43, No. 5 � APPLIED OPTICS 1005
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he bold arrow represents the wave vector, and the
lectric field direction is orthogonal to the figure. If
he amplitude of the incident field is normalized, let
s call � the amplitude of the transmitted field.
rom the reciprocity theorem20 we know that if the

ncident field corresponds to case �b� the transmission
ill be the same ���. Then, from the symmetry of the

tructure, it appears that an incident field with the
lectric field orthogonal to the figure and coming from
he bottom �case �b�� is identical to an incident field
ith the electric field in the plane of the figure coming

rom the top �case �c��, and thus cases �a� and �c� must
lso be identical.
The structure is modeled by use of the rigorous
odal method.21 In this method the field is ex-

ressed on the basis of the modes of the lamellar
tructure. Figure 15 shows the transmission as a
unction of the wavelength when the structure is il-
uminated by a plane wave in normal incidence and
he electric field is normal to the plane of Fig. 14 �case
� or the electric field is in the plane of Fig. 14 �case
�. As expected, the transmission presents a sharp
eak that is the same for both cases. The physical
rigin of the peak is a Fabry–Perot resonance of the
tructure, each pair of crossed gratings acting as a
irror. Indeed, because the medium between the

mirrors” is vacuum, the higher propagation constant
llowed for the excited mode is k0 � ��c. Because the
eriod is smaller than the wavelength, only the zero

ig. 14. Schematic representation of the woodpile gratings. The
arameters are period d � 1 cm, c � 0.7 cm, t � 0.715 cm, t1 � 0.1
m, the optical index of the metal is nm � i 104, and the structure
s lying in vacuum.

ig. 15. Transmission of the woodpile grating of Fig. 14 in normal
ncidence.
ig. 13. Comparison of the influence of the period between the
avity modes and the waveguide modes. �a� Schematic repre-
entations of the cavity-type grating. �b� Influence of the period
of the cavity-type grating on the transmission as a function of

he wavelength. �c� Influence of the period d of the one-
imensional double grating on the transmission as a function of
he wavelength.
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rder of the grating is propagative. Then the excited
ode can have only a null tangential component of

he wave vector �i.e., the Fabry–Perot mode in normal
ncidence�.

The second structure is made of a dielectric slab
laced between two metallic grids �square holes on a
quare lattice made in a metallic layer� as repre-
ented on Fig. 16�b� �slab-type grating�. Figure 16�c�
hows a variant of the structure: In the slab, verti-
al metallic walls are added to form cavities �cavity-
ype grating�. Both structures are symmetric with
espect to top-down symmetry; thus a transmission
qual to 1 is expected for a lossless structure,15

hereas the x–y symmetry ensures a transmission
nsensitive to the polarization of the incident light.
he metallic grid structures are modeled by use of the
ourier modal method.22 In the numerical code the
odes are expressed on a Fourier basis, and both the

ast Fourier factorization23,24 �the proper way to write
roducts of truncated Fourier series� and the
-matrix algorithm25 �to avoid numerical instabilities
wing to growing exponentials� are used. Figure 17
hows the transmission in normal incidence of the
lab-type grating as a function of the wavelength.
he peak with maximum equal to 1 is due to the
xcitation of a guided mode of the slab as explained
or the one-dimensional gratings in the previous sec-
ions; the mode is excited by the �1, 0� or �0, 1� order
f the two-dimensional grating. Note that diminish-
ng the size of the square holes of the grids can nar-
ow the peak. All the parameters of the structure
re given in the figure caption of Fig. 16.
Figure 18 shows the transmission in normal inci-

ence for the cavity-type grating as a function of the

ig. 16. Schematic representation of the biperiodic gratings. �a�
erspective view of the double grating with a continuous dielectric

ayer in the middle. �b� Section of the unit cell �along any of the
eriodicity axes� of the double grating with a continuous dielectric
ayer in the middle �slab type�. �c� Section of the unit cell �along
ny of the periodicity axes� of the cavity-type grating. The pa-
ameters are d � 1 cm, c � 0.5 cm, t � 0.22 cm, t1 � 0.1 cm, w �
.9 cm, n2 � 3.47, the optical index of the metal is nm � i 250, and
he structure is lying in vacuum.
avelength. When compared with Fig. 17, Fig. 18
oes not differ notably. The value of the maximum
f the peak has slightly changed, and the width of the
eak is similar. Figure 19 shows the transmission
or both structures as a function of the angle of inci-
ence for the wavelength corresponding to the max-
mum value of the transmittance in Figs. 17 and 18
for the slab-type grating and the cavity-type grating,
espectively�. The remarkable result is that the
ransmission of the cavity-type grating remains very
igh on the whole range of angle of the figure �20 deg�,

ig. 17. Transmission of the slab-type grating �Fig. 16�b�� in nor-
al incidence.

ig. 18. Transmission of the cavity-type grating �Fig. 16�c�� in
ormal incidence.

ig. 19. Transmission of the slab-type grating �Fig. 16�b�� for � �
.4968 cm �solid curve� and of the cavity-type grating �Fig. 16�c��
or � � 1.4802 cm �dashed curve�.
10 February 2004 � Vol. 43, No. 5 � APPLIED OPTICS 1007
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hereas the transmission of the slab-type grating
alls to approximately 0.5 for an angle of only 5 deg.
his result confirms the demonstration made in Sec-

ion 2 on the one-dimensional grating.

. Conclusion

he enhanced transmission through subwavelength
rids or hole arrays observed by Ebbesen et al.5 in the
isible region and linked with the resonant excitation
f surface plasmons can be obtained in spectral do-
ains and for polarizations for which plasmons are

acking or inoperate. The high transmission is then
inked with the excitation of other electromagnetic
esonances among which are Fabry–Perot,
aveguide-mode, and cavity-mode resonances. The
rst type produces transmission curves with large
pectral and angular bandwidths, compared with
aveguide-mode resonances, whereas cavity-

esonance excitation can achieve simultaneously
igh finesse in � and large bandwidth in incidence, as
ell a spectral peak location almost independent of

he grating period. These characteristics are com-
on to both one-dimensional and two-dimensional

ratings. They can be of great interest in realizing
anosources for the far-infrared and microwave do-
ains. From a theoretical point of view, it is simple

o extend the validity of our results to the visible
omain. As far as the refractive indices are kept
nchanged, rescaling all dimensions by a factor of
0�4 moves the wavelength from 1 cm to 1 �m.
owever, from the experimental point of view, it is

mpossible to find materials with optical indices used
n this study at wavelengths of the order of 1 �m.
n the other hand, in the visible domain, the plasmon

esonances can play a significant role in enhancing
he transmission.

It is necessary to point out that the present study
ddresses configurations having periodicity in one
gratings� or two dimensions �arrayed holes and
rossed gratings� and does not concern enhanced
ransmission through single �patterned or not� holes.

The research of B. Gralak is part of the research
rogram of the Foundation for Fundamental Re-
earch on Matter and was made possible by financial
upport from the Dutch Foundation of Scientific Re-
earch.
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