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Abstract—We present an original study which makes use of a
convenient representation of the dispersion diagrams of Bloch modes
for the design of angular selective sources. These diagrams provide
us all the pertinent information about the radiative properties of the
photonic crystal, and a guideline to optimize the structure in order
to obtain the suitable properties. We apply these tools in two cases:
when the radiated field propagates normally to the device, and also
for an off-axis radiating device. Several numerical examples obtained
from a rigorous numerical method show the relevance of this approach.
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1. INTRODUCTION

Photonic crystals have been extensively studied in the recent years, in
the framework of microwave and optical applications. Several works
have been aimed towards the improvement of the performances of
antennas in the microwave range of frequencies. Among them, a
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special attention has been paid to the use of the photonic crystals
as plane reflecting devices for antennas, able to eliminate the well
known drawbacks of a conducting ground plane. In that case, it has
been demonstrated that the improvements come from a tunable phase
shift for the reflected waves, and from the ability of this structure to
prevent the propagation of surface waves [1–7]. A second direction
of research deals with the use of resonant cavities (or defects in the
photonic crystal) to reduce the angular range of the emitted field [8,
9].

In this paper, we propose an alternative way to enhance the
directivity of an emitting device. It is based on the intrinsic properties
of the photonic crystal material. The directional radiation is obtained
using new kinds of photonic crystals used near the band-gap edge. It
turns out that the adequate tool for describing this property is an
original analysis based on a three-dimensional representation of the
dispersion relations of the Bloch modes propagating inside the crystal.
This approach is illustrated in the case of a two-dimensional dielectric
structure. At a given frequency, a section of this three-dimensional
graph gives a constant-frequency dispersion diagram, which allows
us to predict both the energy flow inside the crystal, and the phase
variations of the field. We show that if the structure is large enough
in the transverse direction, the emitted field outside the crystal is
radiated in a narrow angular range provided that this constant-
frequency dispersion diagram responds to specific requirements.

This property is obtained on two examples by expanding the
hexagonal lattice of the photonic crystal in a convenient direction.
In the first one, the device radiates in the direction orthogonal to the
mean surface of the device. In the second one, the light propagates in
an arbitrarily chosen direction. In both cases, the structure is fed by
a simple wire antenna, one of the interesting features of these devices
being to allow the use of any localized light source inside the crystal.

2. DISPERSION DIAGRAMS

2.1. Energy and Phase Velocities

In this paper, we use a rectangular coordinate system (O, x, y, z).
The unit vectors of the axes are ex, ey, and ez. Harmonic fields are
expressed using a time dependence in exp(−iωt), with ω = 2πc/λ =
ck0, c being the speed of light in vacuum, λ the wavelength and k0 the
wavenumber in vacuum.

We consider two-dimensional photonic crystals made with lossless
materials (dielectric or perfectly conducting). The 2D photonic crys-
tal is invariant by translation along the z-axis, and we consider
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z-independent electromagnetic fields. Consequently, the problem
reduces to two independent scalar problems, that we call E‖ or H‖
according to whether the electric or magnetic field is parallel to the
z-axis. We denote by u(x, y) the relevant component of the total field
(Ez or Hz depending on the polarization case).

Let us first recall classical results on Bloch solutions inside a 2D
photonic crystal. This infinite periodic structure is invariant under two
fundamental and independent translations vectors d and ∆, and then
the permittivity ε is a periodic function:

for all integers p and q, ε(r + pd + q∆) = ε(r). (1)

The Bloch theorem states that each component uk(r) of an electro-
magnetic wave propagating inside the crystal can be expressed in the
form:

uk(r) = exp(ik · r)v(r), (2)

where k is the Bloch wave vector and v(r) is a periodic function:

v(r + pd + q∆) = v(r), for all integers p and q. (3)

For these Bloch modes any translation pd+ q∆ produces only a phase
shift:

uk(r + pd + q∆) = exp (ik · (pd + q∆))uk(r). (4)

In the usual sense of Bloch theorem, the Bloch wave vector k is
real, since one is concerned with bounded solutions. In all this paper
we keep this usual definition.

There exists several methods [10–17] to get the solutions k(ω),
from which the dispersion diagrams can be plotted. In the classical
presentation, the solutions are given in the form of a bidimensional
diagram where the abscissa represents the edge of the first reduced
Brillouin zone. We give in Fig. 1 an example of this diagram in the
case of a photonic crystal made of circular rods of radius ρ = 0.6,
with optical index v = 2.9, lying in vacuum. The rods are arranged
on a hexagonal lattice with period d = 4 (distance between the
centers of the rods). The fundamental translations are d = dex and
∆ = d(1/2ex +

√
3/2ey). These parameters are those of a previous

work depicted in [18]. Figure 1 has been computed using a plane-
wave expansion method [11]. It shows the existence of a gap for
1/λ = ω/(2πc) between 0.1 and 0.14. All the further examples of this
paper will deal with the upper limit of this gap. Indeed, by choosing
λ at this limit, we only allow propagation in directions around that
given by the X point and its five replicas by hexagonal symmetry.

In order to study the flow of energy inside the crystal, let us recall
a fundamental result linking the dispersion relation and the energy
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Figure 1. Dispersion diagram for E‖ polarization in a 2D crystal with
hexagonal lattice. The abscissa represents the Bloch wave vector in the
edge of the first reduced Brillouin zone shown in the small insert.

propagation [19]. For a given Bloch wave, the averaged velocity Ve of
the energy flow (the average is taken upon a lattice cell) is equal to
the group velocity, i.e.:

Ve = Vg = gradk(ω) =
∂ω

∂kx
ex +

∂ω

∂ky
ey. (5)

Thus, the averaged flow of energy is directly linked with the
dispersion curve of the Bloch mode k(ω). However, the usual
representation of the dispersion curve on the edge of the first reduced
Brillouin zone do not explicitly show kx and ky, and do not contain
the information on this group velocity.

This is one of the reasons why we thought that a 3D representation
of the same diagram was more convenient for our purpose. Figure 2
shows the same dispersion diagram as Fig. 1, but the Bloch wave vector
covers the whole Brillouin zone (in fact (kx, ky) belongs to a square
region larger than the first reduced Brillouin zone). In this figure, each
band is represented by a curved sheet. All the information of Fig. 1
is included in this 3D diagram. In order to obtain the usual 2D view,
one should imagine the intersection of the sheets with the vertical walls
of a prism whose base is the first Brillouin zone. Furthermore, much
more information may be drawn from the 3D diagram. For instance,
in an harmonic problem, it is useful to consider the intersection of
the sheets with a horizontal plane corresponding to the wavelength of
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Figure 2. Three-dimensional dispersion diagram. The horizontal
plane gives the Bloch wave vector k. The vertical axis gives 1/λ. The
triangle corresponding to the first reduced Brillouin zone has been
drawn in the (kx, ky) plane. The parameters are the same as in Fig. 1.

interest. By this way, we get a curve in the (kx, ky) plane that we
call constant-frequency dispersion diagram. It can be shown that the
direction of the group velocity for a given Bloch mode is the normal to
this constant-frequency dispersion diagram. Moreover, the combined
use of (5) and Fig. 2 allows one to determine the orientation of this
vector, which points towards the increasing values of ω on the sheet of
Fig. 2. In a recent paper [20], we give more details on this diagram, as
well as its application to the study of ultrarefraction and anomalous
refractive properties of photonic crystals. In the present study, we will
further make use of the phase velocity Vϕ which is proportional to the
Bloch wave vector k, and whose modulus is ω/||k||.

2.2. Crystals with Finite Thickness

Consider now a crystal with finite thickness modeled as a stack of N
grids (Fig. 3). The structure is still infinite along the x-direction. Each
grid is equivalent to a grating.

First, we suppose that this crystal is illuminated by an incident
plane wave:

uinc(x, y) = exp(iαx− iβy). (6)

As well known, the total field uα(x, y) is a pseudo-periodic function of
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Figure 3. A crystal with finite extent with respect to the y-direction,
and made of N gratings (N=3 on this example). The structure is
z-independent, and infinite along the x direction. The periodicity
along x is d. The distance between two grids is ∆y. The x-shift
between two grids is ∆x. Thus, the two elementary translations are
d = dex and ∆ = ∆xex − ∆yey. Each grating is characterized
by x-periodic electromagnetic parameters, which are not necessarily
piecewise constant.

x [21] with pseudo-periodicity coefficient α, i.e.:

uα(x+ d, y) = exp(iαd)uα(x, y). (7)

In this case, it is possible to find a relationship between the allowed
Bloch wave vector in the infinite photonic crystal and the pseudo-
periodicity coefficient α. A detailed explanation of this link is given in
Ref. [20]. Here, we will only give the conclusion and a more intuitive
interpretation.

A Bloch mode (in an infinite crystal) is characterized by the
fact that the elementary translations d and ∆ (and any of their
combinations with integer coefficients) only give rise to phase shifts
on the fields (see Eq. (2) and Fig. 3).

As regards the grating case (crystal with finite thickness), the
phase shift due to the first translation d is automatically taken into
account by the pseudo-periodicity. The Eqs. (7) and (4) match together
when

kx = α. (8)

In order to take into account the second translation ∆, let us consider
an elementary slice of the crystal (see Fig. 4). We associate with ∆ a
translation operator T . It transforms any function f as follows:

Tf(x, y) = f(x+ ∆x, y −∆y). (9)

Outside the crystal the field can be written as a Rayleigh expansion.
Using this basis, the T operator is represented by a T-matrix. The
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Figure 4. An elementary grating extracted from Fig. 3.

introduction of this matrix is necessary from a numerical point of view.
We consider now an eigenvector of the T-matrix, with eigenvalue µ:

Tuµ = µuµ. (10)

When |µ| = 1, Eq. (10) writes:

uµ(x+ ∆x, y −∆y) = exp(i arg(µ))uµ(x, y). (11)

A comparison between Eqs. (4) and (11) gives:

ky =
kx∆x − arg(µ)

∆y
(12)

Eqs. (8) and (12) point out the link between the grating problem and
the Bloch solutions of the infinite structure. Let us emphasize that
these results are rigorous, even though they link quantities defined for
a finite thickness crystal using a concept (Bloch modes) defined in the
case of an infinite crystal. Moreover, Eq. (12) paves the way for getting
the dispersion curves of the Bloch problem from the eigenvalues of the
T-matrix. All the constant-frequency dispersion diagrams presented
in the following are obtained by that way.

When |µ| �= 1, the restriction to the slice (−∆y ≤ y ≤ 0) of uµ
associated with the eigenvector cannot be a Bloch solution with real
vector k.

Consequently, for a given value of α, there are two different
possibilities for the spectrum of the transfer matrix T.

First, if there is no eigenvalue with unit modulus, it seems obvious
that we are in a “gap” situation: if the crystal of Fig. 3 is illuminated
by an incident plane wave (with a wave vector projection on the x-
axis equal to α), the transmitted field through the N gratings tends
exponentially toward zero as N increases. This exponential decay is
directly related to the modulus of the eigenvalue whose modulus is
closest to 1. An example is given in Ref. [20].

Second, if there exists at least one eigenvalue with modulus equal
to 1, there is no gap. In other words, there exists at least one Bloch
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solution that can propagate in the structure. If the crystal of Fig. 3
is illuminated by a plane wave, the incident field can excite the Bloch
solution. But the coupling between the incident field and the Bloch
solution also depends on numerous parameters, and in particular on
the respective symmetries of these two fields [18, 22–24].

In any case, the field in the grating can never be reduced to a
combination of Bloch waves with real Bloch wave vector. The methods
that rely upon this assumption can probably give accurate results
in some circumstances, but their results should be carefully checked
with the help of rigorous methods. The same remark holds for the
conclusions directly obtained from dispersion diagrams of Bloch waves.
However, as shown in the next sections, these dispersion diagrams
are valuable for the prediction and the understanding of the complex
properties of photonic crystals.

As well known in grating theory, the T-matrix that relates the field
above and below a grating suffers from the exponential behavior of its
elements. Consequently, the use of the T-matrix leads to numerical
problems, at least when the structure is composed of several grids.
Many other propagation algorithms are more suitable from this point
of view [25–29]. As regards our aims, we will make use of the T-matrix
of one grid only, in such a way that numerical problems are avoided.

Let us come back to the case of the crystal with finite thickness.
Now, we suppose that this crystal is illuminated by an arbitrary
incident electromagnetic field. For instance, it can be excited by a
localized source. Then, the relevant field component can be written as
a Fourier integral:

u(x, y) =
∫ +∞

−∞
û(α, y) exp(iαx)dα. (13)

By splitting the integration interval ]−∞,+∞[ in subintervals [(n −
1
2)2π

d , (n + 1
2)2π

d ], a simple change of variable leads to the other
expression:

u(x, y) =
∫ π/d

−π/d
uα(x, y)dα, (14)

where the integrand

uα(x, y) =
−∞∑

m=−∞
û

(
α+m

2π
d
, y

)
exp

(
i

(
α+m

2π
d

)
x

)
(15)

is a pseudo-periodic function of x with pseudo-periodicity coefficient
α. Consequently, the study of the general field u(x, y) reduces to the
study of its pseudo-periodic components uα(x, y) for all values of α in
the first Brillouin zone [−π/d, π/d] of the x-periodic problem.
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3. APPLICATION TO THE DESIGN OF DIRECTIVE
SOURCES

In this section, we explain how the tools described in Section 2 can be
used to design directive sources. The aim is to realize a device that
radiates energy in a very narrow angular range. For that purpose,
we want to use only the intrinsic properties of the photonic crystals,
and not the properties of a resonant cavity (such as a planar Fabry-
Perot cavity). More precisely, our objective is to embed a localized
source inside a photonic crystal, and to enforce the radiated field
inside a small angular range centered around the normal (i.e., around
ey). Eq. (13) implies that in the homogeneous medium outside the
crystal, any radiated field writes as a sum of plane waves. In this sum,
the plane waves with significant amplitude should correspond to small
values of α (let us assume α ∈ [−αmax, αmax] ). Then, from Eq. (8), the
allowed Bloch modes of the photonic crystal should lay inside the region
kx ∈ [−αmax, αmax]. In Fig. 5, we represent the dispersion curve of the
homogeneous medium outside the crystal. We assume here that this
medium is vacuum, and this curve is the circle defined by k2

x+k2
y = k2

0.
The angular range around the vertical direction provides the value of
αmax. This means that the curves corresponding to the Bloch modes in
the constant-frequency dispersion diagram should lay inside the region
between the two dashed lines in Fig. 5.

ky

kx

circle: dispersion
curve of the 

vacuum

Allowed propagation
directions outside
the crystal

αmax− αmax

Figure 5. Schematic construction illustrating Eq. (8) and linking the
propagation direction outside a grating made with a photonic crystal
with the Block wave vector.
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Figure 6. Enlarged view of the central sheet of Fig. 2.

We are now concerned with the following problem: to find
a photonic crystal whose constant-frequency dispersion diagram is
entirely included in this region. We assume here that the crystal
is the same as that depicted in Section 2. Since this diagram is a
section by a horizontal plane of the sheets presented in Fig. 2, and
because the crystal has an hexagonal symmetry, at the limit of the gap
(i.e., 1/λ = ω/(2πc) close to 0.14) the constant-frequency dispersion
diagram reduces to six points (i.e., one point in the first reduced
Brillouin zone, the other ones coming from the symmetry). As soon as
we move away from the gap by reducing λ, these points become small
closed curves.

Fig. 6 presents an enlarged view of the central sheet of Fig. 2.
The gap stays behind the main sheet of this figure. In this figure, the
six closed curves correspond to the edges of the dark regions (since we
represent only a quarter of the Brillouin zone, one should recover the
entire diagram using symmetries). It is clear that these six regions are
not in the domain which fulfills our requirements (i.e., only in a small
band kx ∈ [−αmax, αmax] ). The dark region in the top of the figure
lay indeed in the required domain (and its symmetric with respect to
the kx axis also), but the four other regions deduced by hexagonal
symmetry get large values of kx (it is for example the case of the right
most dark region).

One way to overcome this problem is to break the symmetry. We
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Figure 7. The same as Fig. 6, but for the expanded crystal.

have chosen to expand the cell of the crystal in the y direction: the
vertical spacing between two grids is enlarged from

√
3d/2 ≈ 3.46

to 3.9. All the rods keep the same parameters, and in particular
their radius is always ρ = 0.6. Fig. 7 shows the same 3D dispersion
diagram as Fig. 6, but for this expanded crystal. Clearly, this diagram
does not present any more the invariance under 60 degrees rotation
property. Moreover, it emerges that it is possible to choose a value
of λ such that the constant dispersion diagram stays in the required
band. For instance, at the wavelength λ = 7.93 corresponding to
the horizontal plane at the bottom of Fig. 7, the constant-frequency
dispersion diagram reduces to a small curve. In Fig. 7, this curve is
the limit between the dark and white regions in the left-hand upper
corner. It is represented in the (kx, ky) plane in Fig. 8.

At this stage, any source at λ = 7.93, embedded in a slice of this
expanded photonic crystal will radiate a plane-wave packet:

u(x, y) =
∫ +∞

−∞
A(α) exp(iαx± iβ(α)y)dα, (16)

with β2 = k2
0 − α2 and arg(β) ∈ {0, π/2}. The sign in the exponential

depends on the region where the field is radiated (above or below the
crystal). In this packet, the plane waves with significant amplitude
A(α) correspond to small values of α. Note that we neglect the
evanescent modes (those for which |µ| �= 1 in section 2.2. In other
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Figure 8. Constant-frequency dispersion diagram of the expanded
crystal for λ = 7.93.

words, the source should be surrounded by a sufficient thickness of
photonic crystal.

Because of the up-down symmetry, the radiation occurs for both
+ey and −ey directions. One way to eliminate one of these directions
is to use a ground plane (or a mirror). Here, another solution has been
chosen. The initial hexagonal crystal is used as a mirror, since the
wavelength λ = 7.93 is inside a gap of this crystal.

It is worth noticing that all the previous considerations deal with
a crystal with infinite extension along the x-axis. We now model a
crystal with finite extension along this direction. Consequently, one
should expect some discrepancies with the theoretical conjecture and
the numerical study will allow us to determine the influence of the
lateral size of the structure on the expected phenomenon. We use a
modal theory based on scattering matrices, the fields being expressed
as Fourier Bessel series [30, 18]. This method rigorously solves the
problem of scattering from a finite set of parallel rods.

The structure is shown in Fig. 9. In our 2D formalism, we can
use an arbitrary incident field. Here, the excitation is provided by an
infinitely thin wire source located in the expanded crystal at a point
r0 with coordinates x0 = 0, y0 = 34. Consequently, our incident field
generates an E‖ polarized field and is given by

uinc(r) = H
(1)
0 (k0||r− r0||), (17)
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Figure 9. Superposition of a hexagonal photonic crystal (0 < y <
20.8) and of a vertically expanded crystal (20.8 < y < 48.1). The wire
source located at x0 = 0, y0 = 34 is represented by a black point.
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Figure 10. Total field modulus radiated by the structure of Fig. 9
excited by the wire source at λ = 7.93.

the amplitude of the Hankel function being taken equal to unity for
simplicity.

Fig. 10 shows the map of the total field modulus, and Fig. 11 the
energy emission diagram in arbitrary units. The overall appearance
of the field map can be explained using the Bloch modes. Indeed,
if we neglect the evanescent modes, the propagating Bloch modes are
governed by the constant-frequency dispersion diagram shown in Fig. 8
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Figure 11. Polar emission diagram for the structure of Fig. 9 excited
by the wire source at λ = 7.93.

(which must be completed by symmetry). Since the Bloch wave vector
has a small kx component and a larger ky component, and according
to Eq. (2), the average field variation along the x-axis is slow, and the
average field variation along the y-axis is much faster. This property is
clearly shown by Fig. 10. Another interesting feature can be explained
using the constant-frequency dispersion diagram. We know that the
average energy flow of the Bloch mode points toward the normal to the
constant-frequency dispersion diagram. In that case, this diagram is a
small closed curve (Fig. 8), and thus the energy flows in all directions.
The consequences are that the energy radiated by the wire flows in the
whole expanded crystal, and that the phenomenon is not sensitive to
the location of the wire. Fig. 11 shows that the field is radiated in a
narrow angular range. The half-power beamwidth is equal to ±4.0◦
with respect to the normal. Note that the half-power beamwidth of
the field radiated by a screen pierced by an aperture having a width
w of 45 (the transverse dimension of our structure), illuminated by a
field with constant amplitude and phase would be ±0.443λ/w = ±4.5◦.
The main interesting feature of the structure is to generate a field with
slow transverse variation using almost any excitation (in this case, a
simple wire).

In order to reduce the half-power beamwidth, it appears that the
lateral size of the structure must be widened. Fig. 12 is equivalent
to Fig. 10, but the lateral size of the structure is w = 76. Now, the
field shows important transverse variations inside the structure, and
we can observe two regions with high field amplitude. Consequently,
the radiated energy pattern shown in Fig. 13 exhibits secondary lobes.

The spatial variations of the field along the x-axis in Fig. 12 can
be reduced if the wavelength is increased in order to get closer to the
band-gap edge. Indeed, the constant-frequency dispersion diagram will
become a smaller closed curve, and thus the allowed kx components
of the Bloch wave vector will become smaller too. Fig. 14 illustrates
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Figure 12. Total field modulus radiated by a widened structure,
excited by the wire source at λ = 7.93.
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Figure 13. Left: polar emission diagram for the structure of Fig. 12.
Right: the same in cartesian coordinate.

this behavior. For a wavelength equal to 7.96, the spatial variations of
the field along the x-axis are smooth and the radiated energy pattern
shown in Fig. 15 presents one principal lobe only. The half-power
beamwidth is equal to ±2.8◦ apart from the normal and is very close
to the half-power beamwidth ±2.6◦ of the field radiated by an aperture
in a screen with a width w of 76.

Narrower radiation patterns can be obtained by increasing the
lateral size of the structure. But the wavelength should get closer
and closer to the band-gap edge and the range of possible wavelengths
would be reduced.
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Figure 14. Total field modulus radiated by the same structure as in
Fig. 12, but now excited by the wire source at λ = 7.96.
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Figure 15. Polar emission diagram for the structure of Fig. 14.

4. OFF-AXIS RADIATION DEVICE

Our approach allows us to design an emitting device radiating a narrow
beam in any direction (and not necessarily toward the normal). To this
end, we need to rotate the constant-frequency dispersion diagram. This
is done by rotating the expanded crystal.

In the previous section, we have mentioned two ways for elimi-
nating the down propagating field (photonic crystal used in the gap
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Figure 17. Rotated expanded crystal laying above a ground plane.

or ground plane). In this section we have chosen to illustrate the
second possibility. Note that this model (the ground plane) is more
pertinent in the microwaves range. The ground plane is supposed to
be an infinitely conducting plane interface of infinite extension, placed
in the plane y = 0.

We have chosen to rotate the expanded crystal with an angle of
33◦ ≈ arctan(3.9/6). This choice allows us to obtain a lower row of
rods parallel to the ground plane (see Figs. 16 and 17).

Fig. 18 shows the field map when this crystal is excited by a wire
source at λ = 8.01 located at x0 = 0 and y0 = 4. The wavelength
is chosen in such a way that the field flows in the entire crystal.
In that case the transverse variations of the field are smooth in a
direction orthogonal to the desired emitting direction. The Bloch mode
propagating inside the crystal enforces an appropriate field phase on
the upper boundary of the crystal. This phase is appropriate since it
is close to that of a plane wave propagating at 33◦ with respect to the
normal. This example also shows that the location of the wire source
is not critical. We see that the field is not particularly large near the
source, and the largest values are located in the middle of the crystal.
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Figure 18. Total field modulus radiated by the structure of Fig. 17,
excited by a wire source at λ = 8.01, located at x0 = 0 and y0 = 4.
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Figure 19. Polar emission diagram for the structure of Fig. 18.

This property is useful, since it allows one to choose the position of
the source in order to obtain a convenient input impedance.

Fig. 19 shows the polar emission diagram for the same structure
with the same parameters. As expected, the principal lobe is tilted by
an angle of 33◦ from the normal. A small part of the energy radiates in
the symmetric direction. Assuming again that the outgoing wave has
a constant amplitude on the crystal, the half-power beamwidth should
be equal to ±0.443λ/(w cos 33◦) = ±1.9◦, where w = 130 is the lateral
size of the crystal. The actual half-power beamwidth obtained on the
emission diagram is ±2.1◦. This agreement shows the relevance of our
approach.

5. CONCLUSION

We have developed a synthetic approach using the dispersion relations
of the Bloch modes inside an infinite photonic crystal, which allowed
us to anticipate the behavior and the radiative properties of a finite-
size photonic crystal. The main result is that if the constant-frequency
dispersion diagram is included in a small band of the Brillouin zone
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corresponding to a small range of the lateral component of the Bloch
wave vector, and if the structure has a sufficiently large lateral size,
then the emission occurs in a narrow lobe. All the steps yielding to
the design of a directive source using a dielectric photonic crystal have
been given.

This approach is based on the specific properties of the photonic
crystals, and not on resonant properties of a cavity, such as for instance
a Perot-Fabry cavity, or resonances induced by defects in the crystal.
These specific properties are obtained near the band-gap edge. We
have shown that in order to get radiation in a single direction, it can
be useful to break the symmetries of the photonic crystal. This is done
in our examples by expanding the lattice in a convenient direction.
Moreover, we have shown that it is possible to choose arbitrarily the
direction of the major emission lobe.

This study can be generalized to the case of metallic photonic
crystals, as well as to the case of three-dimensional photonic crystals.
The work is in progress in that direction and it will be reported soon.
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