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We describe a way to combine the method of fictitious sources and the scattering-matrix method. The result-
ing method presents concurrently the advantages of these two rigorous methods. It is able to solve efficiently
electromagnetic problems in which the structure is made up of a jacket containing an arbitrary set of scatter-
ers. The method is described in a two-dimensional case, but the basic ideas could be easily extended to three-
dimensional cases. © 2004 Optical Society of America
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1. INTRODUCTION
The scattering-matrix method (SMM)1 applies to the scat-
tering of a finite set of parallel cylinders of arbitrary cross
section and arbitrary electromagnetic constants placed in
a single homogeneous medium. It is based on the expan-
sion of the fields in terms of Fourier–Bessel series around
each cylinder. By using the scattering matrices of each
cylinder and the translation properties of Fourier–Bessel
functions, the method leads to the inversion of a linear set
of equations. The method is rigorous and very efficient.
It can deal for, instance, with photonic crystals (with or
without defects) made up of several hundreds of cylinders
on a standard personal computer.

On the other hand the SMM is not able to deal with cer-
tain configurations of interest, especially when the set of
cylinders is surrounded by a jacket. In the case of a
jacket of circular cross section, it is possible to extend the
SMM by expanding the field around the jacket by using
again Fourier–Bessel series.2 This idea has also been
implemented for the study of microstructured optical
fibers.3

In this paper we extend the method to the case of a
jacket of arbitrary cross section. For that purpose, we
combine the SMM with the method of fictitious sources
(MFS).

The MFS method4 is able to solve the problem of scat-
tering from arbitrary scatterers. In this method, the
space is divided into different regions where the field is
represented as the field radiated by a set of fictitious
sources with unknown intensities. These intensities are
obtained by matching the fields at the boundaries of the
regions by using a least-squares technique.

The basic idea of the method proposed in this paper is
to use the SMM to build a set of functions that correctly
represent the field inside the jacket. These functions are
then used to solve a fictitious sources problem on the
boundary of the jacket.

With this combined use of the SMM and MFS, we enjoy
concurrently the advantages of these two rigorous meth-
ods and can address efficiently new classes of problems,
1084-7529/2004/081417-07$15.00 ©
such as a finite dielectric body drilled by galleries, which
can be, for instance, a macroporous silicon crystal.

The problem under study and our notation are de-
scribed in Section 2. In Sections 3 and 4, we recall the
basis of the MFS and the SMM. Section 5 describes the
combined use of these two methods, and Section 6 pro-
vides some numerical illustrations of the resulting
method.

2. SETTING OF THE PROBLEM
Throughout the paper, we use an orthogonal coordinate
system with unit vectors x̂, ŷ, ẑ. We consider time-
harmonic problems, and the fields are represented by
complex quantities with a time dependence in exp(2ivt).
We denote by e0 and m0 the permittivity and the perme-
ability, respectively, of vacuum and by k0 5 2p/l0
5 v(e0m0)1/2 the wave number. For simplicity, we as-
sume that all the media have the permeability m0 , but
the principle of the method would remain unchanged if
this were not the case. We consider a two-dimensional
problem, assuming that the entire structure is invariant
along the z axis (Fig. 1). The cylindrical scatterer is lim-
ited by its external boundary C0 . The exterior of C0 is the
domain Ve filled with a medium of optical index ne (ne
may be complex, and we note that ke 5 k0ne). The inte-
rior of C0 is the domain V i . It is filled with a medium of
optical index ni (gray region in Fig. 1; ni may be complex,
and we note that ki 5 k0ni), but it also contains cylindri-
cal rods with boundaries Cj ( j 5 1, 2, 3,...) filled with arbi-
trary media.

The structure is illuminated by an incident field coming
from the exterior (this assumption is made for clarity, but
the method can also deal with an excitation from inside C0
with very little modification). This incident field is also
assumed to be z-independent. For instance, it can be a
plane wave, or the field emitted by one (or several) line
source(s) placed outside C0 . It is well known that in that
case the problem can be reduced to two independent prob-
lems: the s polarization case, where the electric field is
2004 Optical Society of America
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parallel to the z axis, and the p polarization case, where
the magnetic field is parallel to the z axis. Each of these
cases leads to a scalar problem where the unknown u is
the z component of either E or H: u 5 Ez (in s polariza-
tion) or u 5 Hz (in p polarization). We denote by u inc the
incident field and by uscat the scattered field in such a way
that the total field is

H u 5 u inc 1 uscat in Ve ~outside C0!

u 5 u int in V i ~ inside C0!
. (1)

3. METHOD OF FICTITIOUS SOURCES
The MFS is a versatile and reliable method able to deal
with many scattering problems. It relies on a simple
idea: The electromagnetic field in the various domains of
the diffracting structure is expressed as a combination of
fields radiated by adequate electromagnetic sources.
These sources have no physical existence, and this is why
we have called them ‘‘fictitious’’ sources. They are lo-
cated in homogeneous regions and not on the interfaces.
In other words, one can consider that they generate elec-
tromagnetic fields that faithfully map the actual field,
thus they form a convenient basis for this field. From a
numerical point of view, proper bases are those capable of
representing the solution with the fewest number of func-
tions. Obviously, the quality of the bases is closely linked
with the nature of the sources and their location. The
freedom in the choice of the sources provides a great
adaptability to various complex problems.

The MFS has been developed in our laboratory in the
past decade, from both theoretical and numerical points
of view.4–8 Almost at the same time and independently,
some other groups have worked on the same basic
ideas,9–14 but their approaches are slightly different from
ours. In fact, one of the first attempts at using this
method is probably due to Kupradze.15 The method has
been developed and applied to a large collection of prob-
lems, and a good review can be found in Ref. 16. It is not
our goal to depict here all the details of the MFS; it will be
sufficient for our purpose to give an outline of the general
principle.

Let us consider the same situation as in Fig. 1, but
without the inclusions: The interior region V i is thus
filled with a homogeneous material of optical index ni
(Fig. 2). Let us imagine a set of N fictitious sources
Se,n (n 5 1, 2,..., N) located at N points re,n in V i and as-
sumed to radiate in free space filled with a medium of in-
dex ne . Let us denote by Fe,n(r) the field radiated by the

Fig. 1. Description of the problem.
source Se,n . By construction, the fields Fe,n(r) satisfy
Maxwell’s equations in Ve and a radiation condition at in-
finity. A linear combination (nce,nFe,n(r) can thus be re-
garded as an approximation ũscat(r) of the diffracted field
uscat(r) in Ve , where ce,n can be understood as the com-
plex amplitude of the source Se,n . So we obtain an ap-
proximation for the field in Ve as

ũscat~r! 5

def

(
n51

N

ce,nFe,n~r!, in Ve , (2)

and thus

u~r! ' u inc~r! 1 (
n51

N

ce,nFe,n~r!, in Ve . (3)

In the same way, we imagine another set of fictitious
sources Si,n (n 5 1,2,...,N) located at N points ri,n in Ve
and supposed to radiate in free space filled with a me-
dium of index ni . Let us denote by Fi,n(r) the field ra-
diated by the source Si,n . The functions Fi,n(r) verify
Maxwell’s equations in V i , and can be used to get an ap-
proximate expansion ũ int(r) of the total field u int(r) in V i
as

ũ int~r! 5

def

(
n51

N

ci,nFi,n~r!, (4)

where ci,n can be understood as the complex amplitude of
the source Si,n .

Note that the nature of the sources can be chosen arbi-
trarily. In our case, we choose infinitely thin line sources
parallel to the z axis: Se,n(r) 5 4id (r 2 re,n) and
Si,n(r) 5 4id (r 2 ri,n). In that case, they radiate the
fields

Fe,n~r! 5 H0
~1 !~keur 2 re,nu!, (5)

Fi,n~r! 5 H0
~1 !~kiur 2 ri,nu!. (6)

Determination of the coefficients ce,n and ci,n is ob-
tained by matching the boundary conditions on the cylin-
der surface C0 . For a given function f(r) let us denote by
Df(r) the value of its normal derivative on C0 . The ex-
act solution verifies

Fig. 2. Sources Se,n (represented by dots) radiate the fields
Fe,n(r) used to represent the scattered field uscat in Ve ; sources
Si,n (represented by stars) radiate the fields Fi,n(r) used to rep-
resent the total field u int in V i .
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H u inc~r! 1 uscat~r! 2 u int~r! 5 0 on C0

Du inc~r! 1 Duscat~r! 2 pDu int~r! 5 0 on C0
,

(7)

where p is a polarization-dependent constant and

H p 5 1 in the s-polarization case

p 5 ~ne /ni!
2 in the p-polarization case

. (8)

The coefficients ce,n and ci,n that give the better ap-
proximation for the fields of Eqs. (2) and (4) are those that
match the boundary conditions in the best way. They are
obtained by minimizing the two expressions derived from
Eqs. (7) and defined on C0 :

5 u inc~r! 1 (
n51

N

ce,nFe,n~r! 2 (
n51

N

ci,nFi,n~r!

Du inc~r! 1 (
n51

N

ce,nDFe,n~r! 2 p(
n51

N

ci,nDFi,n~r!

.

(9)

This can be done in several ways. The simplest one is to
use a point-matching method that enforces the vanishing
of these two expressions on sample points on C0 . In this
way, we can get a system of 2N equations for the 2N un-
knowns ce,n and ci,n . From our numerical experiments,
it emerges that it is preferable to use an overdetermined
system and to solve it in the least-squares sense.17 In
this way, and for a given computation time, we obtain a
better approximation for uscat and u int.

Of course, the efficiency of the method depends on the
location and the number N of the fictitious sources. It
can be shown that the precision of the method is related
to the least-squares remainder obtained in the last step,
which thus can be used to quantize the quality of the so-
lution. This feature is quite helpful in the numerical
implementation.

The interested reader will find more details in Ref. 4.
We have also developed some ‘‘tricks’’ in order to place the

Fig. 3. Cross section of the cylinder and the two sets of sources.
The profile is given by Eq. (10) and the values c25 5 20.1134
1 i0.1310, c24 5 20.0297 2 i0.3238, c23 5 20.4117
2 i0.0973, c22 5 20.1260 1 i1.4149, c21 5 22.3936
1 i2.4031, c0 5 0.5714 1 i0.5000, c1 5 1.5568 1 i0.1876, c2
5 20.1212 2 i0.0197, c3 5 20.8158 1 i0.2155, c4 5 0.2772
1 i0.1039, and c5 5 20.1532 2 i0.0102.
sources automatically. The general idea is to increase
the number of sources where the radius of curvature of C0
is lower. An example is given in Fig. 3. The cross sec-
tion of the cylinder C0 mimics a rounded letter F (first let-
ter of Fresnel Institute), and it is given by the parametric
equation

z~t ! 5 x~t ! 1 iy~t ! 5 (
n525,5

cn exp~in2pt !. (10)

The values of the coefficients cn are given in the caption of
Fig. 3. We use N 5 200 sources in each region Ve and V i
and 2N sample points on C0 . This cylinder of index ni
5 1.5 lies in vacuum (ne 5 1) and is illuminated at an
incidence u inc 5 245° by a plane wave with wavelength
l0 5 2 and unit amplitude. Figure 4 gives the intensity
D(u) scattered at infinity in the direction u. It is defined
in the following way: As a result of the asymptotic be-
havior of the Hankel function, the scattered field at infin-
ity is written (with r 5 uru) as

uscat~r! ' g~u!
exp~iker !

Ar
, (11)

and the intensity scattered at infinity is

Fig. 4. Scattered intensity at infinity for both polarizations.

Fig. 5. Modulus of the total field in p polarization.
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D~u! 5 2pu g~u!u2. (12)

Finally, Fig. 5 shows the field map in the vicinity of the
scatterer.

4. THE SCATTERING-MATRIX METHOD
The SMM is able to solve the problem of the diffraction by
an arbitrary set of parallel cylinders placed in a homoge-
neous medium. A detailed description of the problem can
be found in Ref. 1. Note that the method is also called
‘‘multipole method’’ by other authors and has been used to
study the local density of states in photonic crystals18 as
well as microstructured optical fibers.3 We give below
only an outline of the basic ideas.

We consider a set of Nc parallel cylinders Cj , as shown
in Fig. 6. To lay the groundwork for Section 5 we assume
that the medium outside the cylinders has the index ni as
defined in Section 2. The incident field u inc can be arbi-
trary (plane wave, line source, etc.).

For any cylinder Cj , we consider a circle Dj with center
Oj in such a way that the cylinder is completely inside Dj
(Fig. 7). Because of the properties of the Helmholtz
equation, the total field u(P) at a point P on Dj can be
written as a Fourier–Bessel expansion. Denoting by
rj(P) and u j(P) the polar coordinates in the local system
(Oj , xj , yj), we can write

u~P ! 5 (
m52`,1`

@aj,mJm(kirj~P !)

1 bj,mHm
~1 !(kirj~P !)#exp@imu j~P !#. (13)

The two terms in the preceding series of Eq. (13) can be
interpreted in the following way. The second term satis-
fies a radiation condition and thus represents the field

Fig. 6. Set of Nc 5 3 parallel cylinders in a medium with index
ni in the case in which the incident field is created by a line
source.

Fig. 7. Circle Dj surrounding the cylinder Cj and local coordi-
nate system.
scattered by the cylinder Cj . For each cylinder, this scat-
tered field will be characterized by the matrix column bj
containing the bj,m elements. The first term represents
the local incident field on the cylinder Cj generated by the
actual incident field u inc as well as by the fields scattered
by all the other cylinders Ck with k Þ j.

If we denote by aj the matrix column containing the
aj,m and use translation properties of Bessel functions
(Graf ’s formula19), we can obtain1 for any cylinder Cj a lin-
ear relationship,

aj 5 Qj 1 (
kÞj

Tj,kbk , (14)

where Qj is a known column matrix that represents the
actual incident field on the cylinder Cj , and Tj,k is a
known square matrix (its elements simply contain expo-
nentials and Hankel functions).

For any cylinder Cj , another relation between bj and aj
is provided by the scattering matrix Sj of the cylinder.
The diffracted field is linked to the local incident field by

bj 5 Sjaj . (15)

By eliminating aj from Eqs. (14) and (15) and then col-
lecting the equations written for each cylinder, we obtain
a linear system that gives the solution bj as

F I 2 S1T1,2 ¯ 2 S1T1,N

2S2T2,1 I ¯ 2 S2T2,N

] ] � ]

2SNTN,1 2 SNTN,2 ¯ I
G S b1

b2

]

bN

D
5 S S1Q1

S2Q2

]

SNQN

D , (16)

where I denotes the identity matrix. For brevity, this
equation will be written as

S21B 5 A (17)

and formally inverted as

B 5 SA. (18)

Now let us point out some features of the method.

1. In Eq. (18), column A linearly depends on the ac-
tual incident field u inc, and column B contains the infor-
mation on the field diffracted by the entire set of cylin-
ders. In that sense S is the scattering matrix of the set of
cylinders. From Eq. (16), it appears that S21 is simply
built as soon as the scattering matrices Sj of all cylinders
are known. This feature is interesting from a numerical
point of view. It means that the individual scattering
matrices Sj can be constructed independently from the
main code dealing with the set of cylinders. That is why
we call this the scattering-matrix method. When the cyl-
inders are circular, matrices Sj are very simple and re-
duce to diagonal matrices whose elements can be ex-
pressed in closed form. When the cylinders are not
circular, we use an external integral code to compute the
Sj . Another important point is that, when all the cylin-
ders in the set are identical, all the matrices Sj are also
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identical (because they are defined in the local coordinate
system centered on each cylinder).

2. Solving the system of Eq. (16) gives the bj,m .
From that knowledge, the total field u is given outside the
circles Dj by

u~P ! 5 u inc~P !

1 (
j51

Nc

(
m52`

1`

bj,mHm
~1 !(kirj~P !)exp@imu j~P !#.

(19)

The consequence is that everywhere outside the circles
Dj , the field u and also its derivatives are known in closed
form by Eq. (19) and its derivatives.

3. For numerical purposes it is clear that the series in
Eq. (13) has to be truncated. It can be shown that, as a
result of properties of the Helmholtz equation, the terms
of the series are decreasing extremely fast after a given
threshold is reached. Assuming that we keep M terms in
the series, columns aj and bj reduce to M elements, ma-
trices Sj have a rank M, and the linear system of Eq. (16)
has a rank Nc 3 M. In fact, the value of M is closely
linked with the radius r of the cylinders (or of Dj for non-
circular cylinders) and the wavelength l i 5 2p/ki . A
convenient value for M is given by the empirical rule M
' 40 r/l i (taking for M an odd integer). With such
value of M, the accuracy is better than 1%. As an ex-
ample, for typical values used in photonic crystal prob-
lems, we generally take M 5 7. This means that for N
5 100 cylinders, we solve a 700 3 700 system.

4. The incident field is arbitrary. It can be a plane
wave, a Gaussian beam, or the field emitted by one (or
several) infinitely thin line source(s) parallel to the z axis
acting as an antenna. For the purpose of this paper, we
are mainly interested in this last case, and u inc is then
given by expressions similar to Eq. (6). Note that the in-
cident field appears only in the second member of Eq.
(16), and consequently, dealing with several incident
fields is numerically very efficient.

5. Last, we must point out one limitation of the
method. The Fourier–Bessel expansion in Eq. (13) is
valid only if the circle Dj lies in a homogeneous medium.
This means that the circle that contains one cylinder can-
not intersect the boundary of another cylinder. In other
words, one can remember that the circles Dj must have no
intersections. Of course, this is always so when the cyl-
inders are circular. In fact, for noncircular cylinders, the
problem is much more subtle, and the method should also
work in some cases where the circles intersect. This
problem is similar to the problem of validity of the Ray-
leigh hypothesis in grating theory.20

5. HYBRID METHOD COMBINING THE
METHOD OF FICTITIOUS SOURCES AND
THE SCATTERING-MATRIX METHOD
Let us come back to the original problem described in Sec-
tion 2. This problem can be solved by a slight modifica-
tion of the MFS described in Section 3.

Indeed, the scattered field can be still expressed as in
Eq. (2) by using-the same fictitious sources Se,n [line
sources that radiate Fe,n(r) fields expressed as Hankel
functions exactly as in Eq. (5)]. But in that case the
Fi,n(r) functions used to expand the field in V i (inside C0)
must be changed. Let us consider the problem depicted
in Fig. 8. The inclusions Cj are immersed in a medium
with index ni (the boundary C0 of the external scatterer is
suppressed). We keep the same line sources Si,n as in
Section 3. The new Fi,n(r) function is the total field
when the structure of Fig. 8 is excited by the source Si,n .
By solving this problem as proposed in Section 4, Fi,n(r)
can be expressed by expansion (19). In other words
Fi,n(r) (n 5 1, 2,..., N) is a set of solutions for the total
field inside C0 that are available in closed form and that
can be used to expand the field in V i following Eq. (4).
Using expansion (19), we can compute the value of Fi,n(r)
and its normal derivative on C0 and get expressions (9) to
be minimized. This minimization gives the coefficients
ce,n and ci,n , and we finally get the expressions of the to-
tal field in closed form everywhere by using relation (3) in
Ve and relation (4) in V i .

6. NUMERICAL EXAMPLES
We begin our numerical examples by a comparison with
the result of Ref. 2. With the notation of Section 2, C0 is
a circle of radius 10 (arbitrary units), the outside medium
is vacuum (ne 5 1), and ni 5 4. The inclusions are cir-
cular cylinders of radius 0.8 filled with vacuum and ar-
ranged with a hexagonal symmetry, with the distance be-
tween the centers of the cylinders equal to 4. The central
cylinder is suppressed. The structure is illuminated by a
plane wave in p polarization, coming from the top of the
figure, with amplitude normalized to unity. The wave-
length l0 5 22 is chosen to get a resonant localized mode
inside the structure. Figure 9 shows the modulus of the
total field. It is quite similar to Fig. 7 of Ref. 2 except
inside the small cylinders, where we are inclined to trust
our computation. Note that the method described in Ref.
2 can deal with an external boundary C0 with a circular
shape only.

In a second example, we illustrate some possibilities of
the method in a more complex situation. As in Section 3
the cross section of the cylinder C0 is the letter F, but now
with sharp edges (Fig. 10). The reason for this choice is
only to prove that the method also works well in such a
case, which is more difficult to solve than a cylinder with
rounded boundaries. All the coordinates of C0 corners in

Fig. 8. Setting of the problem to obtain the functions Fi,n(r).
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the (x, y) plane have integer values that can be deduced
from Fig. 10. The profile C0 is described by a series iden-
tical to that in Eq. (10), but in this case we use a large
number of cn coefficients (n 5 2100, 100) to get a quasi-
polygonal shape. For the interested reader, some more
details on the technical parameters of the computations
are available.21 This scatterer of index ni 5 1.5 lies in
vacuum (ne 5 1). There are also four inclusions inside
C0 . The elliptical one has principal axes with half-
dimensions of 1 and 0.5, its center is at (21, 4), its prin-
cipal axes are rotated 45° away from the x, y axes, and it
is made of infinitely conducting material. The rectangu-
lar one is placed in the region 21.5 , x , 20.5 and 22
, y , 0 and is filled with vacuum. One of the circular
inclusions has its center at (2, 21) and a radius of 0.5,
and it is filled with vacuum. The second circular inclu-
sion has its center at (3, 4) and a radius of 0.5, and it is
filled with a lossy material of optical index 0.5 1 2i (typi-
cal value for a metal in the optical range). This structure
is illuminated with an incidence u inc 5 245° by a plane

Fig. 9. Field modulus in the same conditions as in Ref. 2. The
gray levels are chosen to match as closely as possible those of
Ref. 2.

Fig. 10. Modulus of the total field for a scatterer with four in-
clusions.
wave of wavelength l0 5 2 and p polarization. In this
case, the number of sources in each region Ve and V i is
taken to be N 5 500. The total Hz field map is shown in
Fig. 10. Note that the present version of our numerical
code does not allow us to compute the field inside a circle
that includes elliptical or rectangular bodies. This is
why dark areas appear around these two inclusions.

Our last, and more practical, example illustrates the
case of a dielectric slab periodically drilled with 364 cir-
cular air holes. The sides of this finite slab are defined
by x 5 613.944 and y 5 62.6996 (see Fig. 11). The per-
mittivity of the slab is ni

2 5 12 and the radius of the holes
is 0.294, and the holes are placed with hexagonal symme-
try. The distance between the centers of two neighbor
holes is 0.68. These parameters are chosen in order to
exhibit a negative refraction in s polarization at the wave-
length l0 5 2.02. The structure lies in vacuum and is il-
luminated by a Gaussian beam coming from the top with
an incidence u0 5 30°. The exact definition of this inci-
dent field is

u inc~x, y ! 5 E
2`

1`

A~a!exp@iax 2 ib~a!y#da, (20)

with b(a)2 5 k0
2 2 a2 and with a Gaussian amplitude:

A~a! 5
W

2Ap
expF2

~a 2 a0!2W2

4 G . (21)

The mean incidence u0 5 30° of the beam is such that
a0 5 k0 sin u0 . The parameter W in Eq. (21) is directly
linked to the incident beam width and has the value W
5 5. Figure 11 shows the resulting field map, including
the negative refraction inside the crystal.

7. CONCLUSION
We have presented a method that combines the advan-
tages of the MFS and the SMM for the study of scatterers
of arbitrary shape and containing arbitrary inclusions.
Note that the MFS by itself could also deal with such

Fig. 11. Modulus of the total field. Above the slab, the slanted
line shows the locus of the maximum of the Gaussian incident
beam. Below the slab, it shows the locus of the maximum of the
transmitted field. Above the slab, the structure of the field is
due to the interference between the incident and the reflected
fields.
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problems, since it is not limited to diffraction by one ho-
mogeneous body (the extension of the MFS to several bod-
ies is straightforward). But in many cases the method
presented here is more efficient, particularly when the in-
clusions have circular cross sections, since in that case
the SMM is particularly efficient.

It is also important to note that any method able to ef-
ficiently compute the field and its derivatives inside C0 in
the presence of sources placed outside C0 (the problem
summarized in Fig. 8) could be used in place of the SMM.
In other words, the MFS could be combined with various
other methods by using the basic ideas described in this
paper.

Let us also stress that since the method described in
this paper is based on quite intuitive principles that re-
main true for three-dimensional problems, it can also be
easily extended to this class of problem. For instance,
the method could be useful for the study of problems deal-
ing with a small number of buried objects.

Our short-term goal is to apply the method to the study
of slabs made with two-dimensional photonic crystals,
and in particular to the study of the negative refraction
that can be observed in such structures.

Corresponding author G. Tayeb’s e-mail address is
gerard.tayeb@fresnel.fr.
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