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Diffraction theory in TM polarization: application
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The diffraction of an electromagnetic wave by a cylindrical object with arbitrary cross section is studied by
taking advantage of recent progress in grating theories. The fast Fourier factorization method previously de-
veloped in Cartesian coordinates is extended to cylindrical coordinates thanks to the periodicity of both the
diffracting object and the incident wave with respect to the polar angle u. Thus Maxwell equations in a trun-
cated Fourier space are derived and separated in TE and TM polarization cases. The new set of equations for
TM polarization is resolved numerically with the S-matrix propagation algorithm. Examples of elliptic cross
sections and cross sections including couples of nonconcentric circles show fast convergence of the results, for
both dielectric and metallic materials, as well as good agreement with previous published results. Thus the
method is suitable for an extension to conical (out-of-plane) diffraction, which will allow studying mode propa-
gation along microstructured fibers. © 2004 Optical Society of America

OCIS codes: 050.1960, 060.0060.
1. INTRODUCTION
Since 1960 and the advent of powerful computers, several
families of diffraction theories have been developed,
among which are the integral method, the modal method,
the differential method, and the fictitious source method.
The integral method was the first rigorous grating theory
applied to perfectly conducting gratings and was quickly
generalized for finite conductivity. The differential
theory soon followed1 but turned out to be limited in its
application range by numerical contamination appearing
in the integration process. The problem was resolved
only around 20 years later by use of suitable matrix
propagation algorithms,2,3 among which the most suitable
is the S-matrix propagation algorithm.3,4 It was then
possible to integrate the ordinary differential field propa-
gation equations over thousands of wavelengths without
losing significant digits. However, slow convergence of
the Fourier series of the field was still seen in TM polar-
ization. A key paper4 pointed out that this slow conver-
gence could result from a wrong truncation process of the
Fourier series and established two factorization rules to
help correct truncating. By a suitable continuation of the
notion of tangential and normal components of the field in
the entire modulated region, two of the authors (M.
Nevière and E. Popov) applied the previous rules to ob-
tain a new formulation of the Maxwell equations in a
truncated Fourier space that has been called the fast Fou-
rier factorization (FFF) method.5,6

The present paper shows the adaptation of the FFF
method coupled with the S-matrix propagation algorithm
in a cylindrical coordinate system. Thus we consider a
cylindrical device with natural periodicity according to
the angle coordinate. The TM polarization of the field is
1084-7529/2004/112146-08$15.00 ©
considered, since the TE case has been resolved for many
years and does not require the FFF method. Several
cross-section shapes are considered: elliptical cylinder,
two identical circular cylinders symmetrically centered on
the x axis, and one circular cylinder centered outside the
origin. The numerical results are compared with the
method of fictitious sources for isolated rods7,8 and the
multipole method for a finite set of parallel cylinders.9

2. PRESENTATION OF THE PROBLEM
We consider in Fig. 1 a cylindrical object described in both
a Cartesian coordinate system Oxyz and with cylindrical
coordinates r, u, z. Its surface (S) is produced by an ar-
bitrary directrix located in the cross-section plane and
generatrices that are straight lines parallel to the z axis.
The equation of the directrix is f(r, u) 5 0 or r 5 g(u),
where f and g are given functions. The surface (S) di-
vides the space into two regions. Region 1 is contained
inside the surface and is filled with a linear, homoge-
neous, and isotropic medium, dielectric or conductor (non-
magnetic), and its complex permittivity is denoted e1 .
Region 2 is the outside region with real permittivity e2 .
The present method requires introducing three new areas
defined by two circular cylinders with directrices C1 and
C2 . The directrix C1 is the inscribed circle to the direc-
trix of surface (S), and C2 is the circumscribed circle.
The area included between both circular cylinders is
named the modulated area; inside this area the permit-
tivity e(r, u) is a 2p-periodic, piecewise-constant function
with respect to u.

An incident plane wave with wave vector k2 contained
in the cross-section plane falls on the device. We assume
2004 Optical Society of America
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that its components have an harmonic exp(2ivt) time de-
pendence. Thus the components of the incident field A(i)

read as

A~i!~r, u, t ! 5 A0 exp@i~a0r cos u

1 b0r sin u!#exp~2ivt !,

A P $Er , Eu , Ez , Hr , Hu , Hz%. (1)

Since the diffraction problem (surface and incident wave)
is z independent, the total field remains z independent.
Moreover, the cylindrical coordinate system naturally im-
plies a 2p periodicity with respect to u. In view of a nu-
merical implementation of the theory, any electromag-
netic and geometrical quantity u will be represented by
its Fourier development truncated up to the Nth order:

u~r, u, t ! 5 exp~2ivt ! (
n52N

1N

un~r !exp~inu!,

un~r ! 5
1

2p
E

0

2p

u~r, u!exp~2inu!du. (2)

3. FAST FOURIER FACTORIZATION
METHOD EXTENDED TO CYLINDRICAL
COORDINATES
A. Reformulation of the Linear Relation between E and
D
The first important and original point of our paper con-
sists of adapting the FFF6 method to cylindrical coordi-
nates. The basic idea consists of finding the best formu-
lation in a truncated Fourier space of a product of two
discontinuous functions, each function being represented
by two truncated Fourier series. This problem occurs in
the modulated area when we want to calculate D given by

D 5 e~r, u!E. (3)

In fact, the function e(r, u) is discontinuous across the
surface (S). The three factorization rules established by
Li4 may allow us to obtain a solution to this problem.
The first rule provides that the Fourier components hn of
the product h(x) of two periodic, piecewise-smooth,
bounded functions f(x) and g(x) are given by Laurent’s
rule:

hn 5 @ f~x !g~x !#n 5 (
m52N

1N

fn2mgm . (4)

Fig. 1. Arbitrary shaped cylindrical object.
To simplify the equations that follow, we introduce the
Toeplitz matrix vfb defined by (vf b)n,m 5 fn2m and the col-
umn vector [ g] with elements gn . Thus the last equation
reads in matrix notation as

@ fg# 5 vf b@ g#. (5)

The second rule of Li4 states that a product of two
piecewise-smooth, bounded, periodic functions that have
only pairwise-complementary jump discontinuities (i.e.,
that have a continuous product) cannot be factorized by
Laurent’s rule, but, in most cases, it can be factorized by
the inverse rule:

@ f~x !g~x !#n 5 (
m52N

1N S V 1

f B
21D

n,m

gm . (6)

Or, in matrix notation,

@ fg# 5 V 1

f B
21

@ g#. (7)

Finally the most general situation concerns a product of
two piecewise-smooth, bounded, periodic functions that
have concurrent but not complementary jump disconti-
nuities. Such a product can be correctly factorized nei-
ther by Laurent’s rule nor by the inverse rule. This is
the case that occurs in Eq. (3).

The basic idea of the FFF method is to use the first two
rules to write a new formulation of Eq. (3), thanks to a
suitable continuation. In the modulated area, the D vec-
tor is decomposed into its tangential and normal compo-
nents:

D 5 e~ET 1 EN!. (8)

The normal component of D is continuous across the sur-
face (S), and the dielectric function is discontinuous.
This leads to application of the inverse rule to calculate
the Fourier components of DN 5 eEN . On the other
hand, Laurent’s rule is applied to the tangential compo-
nent DT of D, since ET is continuous across (S). Intro-
ducing the column vector [D] made by three blocks con-
taining 2N 1 1 Fourier components of Dx , Dy , and Dz ,
we find that Eq. (8) becomes

@D# 5 ve b@ET# 1 V 1

e
B 21

@EN#. (9)

The tangential vector is derived from the normal vector
by ET 5 E 2 EN . The normal component is the scalar
product between the normal vectors of the surface (S) and
the field: EN 5 (N – E)N. Equation (9) then reads as

@D# 5 ve b@E# 2 S ve b 2 V 1

e
B 21D @~N – E!N#. (10)

Besides, we define the matrix noted (NN) by (NN) ij
5 NiNj with i, j 5 r, u, z. Since the surface is z inde-
pendent, Nz 5 0. Finally, we obtain

@D# 5 Qe~r !@E#, (11)

with
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Qe~r ! 5 F ve bvNu
2b 1 V 1

e
B 21

vNr
2b 2 S ve b 2 V 1

e
B 21D vNrNub 0

2S ve b 2 V 1

e
B 21D vNrNub ve bvNr

2b 1 V 1

e
B 21

vNu
2b 0

0 0 ve b

G . (12)
The size of this matrix is 3(2N 1 1) 3 3(2N 1 1).
Moreover, we notice that the matrix Qe contains the
Toeplitz matrices vNr

2b, vNu
2b, and vNrNub. But Nr and

Nu are defined only on the surface (S); that is why we
need to extend their definition inside the whole modu-
lated area. The extension is done in the following way.
The unit vector normal to the surface (S) reads as

N(r 5 g~u!, u) 5 S grad~ f !

ugrad~ f !u D
r5g~u!

,

f~r, u! 5 r 2 g~u! 5 0. (13)

From its definition, N depends only on u and is defined on
S only. But we extend its definition in the entire modu-
lated area (R1 , r , R2) by introducing a new vector
continuous across the diffracting surface S and defined by

;r P @R1 , R2#, N~r, u! 5
grad~ f !

ugrad~ f !u
. (14)

We could use another method that would lead to similar
numerical results.

B. Maxwell Equations in a Truncated Fourier Space—
the TM Case
Differentiating the series in Eq. (2) with respect to u re-
sults in multiplying the nth term by in. Thus, introduc-
ing a diagonal matrix a such as (a)nm 5 ndnm , we find
that the derivation reads in matrix notation as

]@A#/]u 5 ia@A#. (15)

Consequently, Maxwell equations written in a cylindrical
coordinate system become

1

r
a@Ez# 5 vm0@Hr#, (16)

d@Ez#

dr
5 2ivm0@Hu#, (17)

1

r S @Eu# 1 r
d@Eu#

dr
2 ia@Er# D 5 ivm0@Hz#, (18)

1

r
a@Hz# 5 2v@Dr#, (19)

d@Hz#

dr
5 iv@Du#, (20)

1

r S @Hu# 1 r
d@Hu#

dr
2 ia@Hr# D 5 2iv@Dz#. (21)

From Eq. (11) we obtain the expression of each component
of [D] in a cylindrical coordinate system in terms of the E
components. We then notice that Eqs. (16)–(21) are split
into two independent differential sets. The first one, in-
cluding Eqs. (16), (17), and (21), is the TE polarization
case with unknown functions Ez and Hu ; the other one
corresponding to Eu and Hz components is the TM case.
The first one is well known and has been resolved for a
long time because it does not need the FFF method or,
more precisely, the second factorization rule. That is
why we concentrate on the TM case corresponding to Eqs.
(18), (19), and (20). With the use of the following nota-
tion,

Qe 5 F Qe,rr Qe,ru 0

Qe,ur Qe,uu 0

0 0 Qe,zz

G , (22)

Eq. (20) reads as

d@Hz#

dr
5 ivQe,ur@Er# 1 ivQe,uu@Eu#. (23)

And Eq. (19) becomes

@Er# 5 2
1

rv
Qe,rr

21 a@Hz# 2 Qe,rr
21 Qe,ru@Eu#. (24)

These two last equations permit us to obtain

d@Hz#

dr
5 iv~Qe,uu 2 Qe,urQe,rr

21 Qe,ru!@Eu#

2
i

r
Qe,urQe,rr

21 a@Hz#. (25)

In the same way, we deduce from Eqs. (18) and (24)

d@Eu#

dr
5 2

1

r
~iaQe,rr

21 Qe,ru 1 Id!@Eu#

1 iS vm0Id 2
1

r2v
aQe,rr

21 a D @Hz#, (26)

where Id is the identity matrix. Finally, we obtain a set
of first-order differential equations written in matrix
form:

d

dr
S @Eu#

@Hz#
D 5 FM11 M12

M21 M22
G S @Eu#

@Hz#
D . (27)

It is important to notice that the four-block matrix M is
depending only on the r coordinate and that its size is
2(2N 1 1) 3 2(2N 1 1). Equation (27) is the new for-
mulation of Maxwell equations in a truncated Fourier
space for the TM case of polarization.
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4. RESOLUTION OF THE DIFFRACTION
PROBLEM
A. Field Expressions in the Homogeneous Regions
According to the r dependence of the M matrix, no explicit
expression of the field in the modulated area can be
found. On the other hand, Maxwell equations in the ho-
mogeneous regions ( j 5 1 or 2) permit us to obtain a set
of independent second-order differential equations for the
z component of the magnetic field:

~kjr !2
d2Hz,n

dz2
1 kjr

dHz,n

dz
1 @~kjr !2 2 n2#Hz,n 5 0.

(28)

These equations have explicit solutions given by

Hz,n 5 Ah,n
~ j ! Jn~kjr ! 1 Bh,n

~ j ! Hn
~ j !~kjr !, (29)

with kj
2 5 v2m0e j and Re(kj) 1 Im(kj) > 0. The other

components of the field are derived from Maxwell equa-
tions written in a homogeneous region:

Er 5
i

evr

]Hz

]u
,

Eu 5 2
i

ev

]Hz

]r
,

Hr 5 2
i

m0vr

]Ez

]u
,

Hu 5
i

m0v

]Ez

]r
. (30)

Equations (29) and (30), which allow us to find the com-
ponents of the development of the fields, can be written in
a matrix form. Thus we define matrix C ( j), which links
the vector @F(Rj)# containing the components of succes-
sive Eu and Hz with the vector @V ( j)# containing the com-
ponents Ah,n

( j) and Bh,n
( j) , by

@F~Rj!# 5 Fc11
~ j ! c12

~ j !

c21
~ j ! c22

~ j !G @V ~ j !#, (31)

with

~C11!nm 5 2
i

ve j
F n

Rj
Jn~kjRj! 2 kjJn11~kjRj!Gdnm ,

~C12!nm 5 2
i

ve j
F n

Rj
Hn

1~kjRj! 2 kjHn11
1 ~kjRj!Gdnm ,

~C21!nm 5 Jn~kjRj!dnm ,

~C22!nm 5 Hn
1~kjRj!dnm .

We notice that the size of vectors @F(Rj)# and @V ( j)# is
2(2N 1 1).

B. Integration of the Differential Set
The algorithm that integrates the set (27) uses a shooting
method that consists of changing the boundary-value
problem into an initial-value problem. In fact, we have
the continuity of the tangential components of the field
across circles C1 and C2 with radius R1 and R2 . That is
why we have chosen the z and u components of the field as
unknown functions of the differential set (27). We take
2(2N 1 1) independent initial vectors denoted V̂p :

~V̂p!i 5 dpi , i P @1, 2~2N 1 1 !#. (32)

Putting these vectors into columns, we form the unit ma-
trix @V̂1# 5 (...,V̂p ,...) 5 Id , and the corresponding
fields read as @F(R1)# 5 C (1)Id 5 C (1) at r 5 R1 . We
use that value of @F(R1)# as initial values of the field in-
troduced into the algorithm, which integrates the differ-
ential system. The result is a matrix denoted @F̂ int(R2)#
that gives the field at R2 , and the components Ah,n

(2) and
Bh,n

(2) are deduced by @V̂2# 5 C (2)21@F̂ int(R2)#; since @V̂1#

5 Id , we obtain @V̂2# 5 C (2)21@F̂ int(R2)#@V̂1#. Recalling
that the operator that links the components at R1 and R2
is the transmission or T matrix, we simply obtain

T 5 C~2 !21@F̂ int~R2!#. (33)

The T matrix depends only on the system (S). Thus it
gives the transmitted field corresponding to any incident
wave. In fact, according to the following Bessel develop-
ment, Eq. (1) can be written as

Hz
~i ! 5 (

n 5 2`

1`

Ah,z exp~2inu i!i
nJn~k2r !exp~inu!,

(34)

where u i is the angle between the wave vector of the inci-
dent field and the x axis and Ah,z is the amplitude of the
incident wave. Finally, introducing the Tij blocks of the
T matrix, we obtain

S ]

Ah,n
~1 !

]

D 5 T11
21S ]

Ah,zi
n exp~2inu i!

]

D , (35)

S ]

Bh,n
~2 !

]

D 5 T21T11
21S ]

Ah,zi
n exp~2inu i!

]

D .

(36)

5. NUMERICAL APPLICATION IN SOME
PARTICULAR CASES
A. Cylinder with Elliptic Cross Section
First of all, we illustrate our study on a diffracting surface
directrix with elliptic shape (Fig. 2) given by

Fig. 2. Elliptically shaped cylindrical object.
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r~u! 5
ab

@a2 1 ~b2 2 a2!cos2 u#1/2
, (37)

where a and b are the half-large and the small axis, re-
spectively. Then the calculus of the permittivity’s devel-
opment becomes easy, since the permittivity is a step
function with respect to u. On the other hand, the func-
tions that describe the u and r components of the surface’s
normal vector remain difficult to Fourier analyze. Their
equations are

Thus we have used the fast Fourier transformation algo-
rithm to determine the Fourier components of these func-
tions. As a result, the Toeplitz matrices veb, vNr

2b, and
vNu

2b are known.
At infinity the diffracted field can be expressed by using

the asymptotic form of the Hankel functions:

Hz
d~r, u, t ! 5 exp~2ivt !g~u!

exp~ik2r !

Ar
,

g~u! 5 S 2

pk2
D 1/2

(
n52`

1`

Bh,n
~2 !

3 expF inS u 2
p

2 D G . (40)

The corresponding intensity called the differential cross
section is defined by

D~u! 5 2pu g~u!u2. (41)

To validate results, we compare the differential cross sec-
tion calculated with the present (FFF) method and the
one determined with another method (fictitious source
method). In addition, our theory reduces to the classical
differential method if vNr

2b 5 I and vNu
2b 5 vNrNub 5 0.

The comparison with the classical differential method
points out the improvement due to the FFF method con-
cerning the convergence of the differential cross-section
function for a given u when the N order is increased.

The T-matrix propagation algorithm has been applied
to a device filled with a dielectric medium. Thus the in-
dex is a real number, and we choose n1 5 5. The outside
region is the vacuum (n2 5 1). Such a index gap is cho-
sen to stress the improvement due to the FFF method.
In fact, we need more components to described the
piecewise-constant function of the permittivity in the
modulated area than for a conventional dielectric. The
incident wave vector is parallel to the x axis (u i 5 0), and
the wavelengh is l 5 1. We notice that it is not neces-
sary to specify the unity of lengths because it can be nor-

Nr~u! 5
a2 1 ~b2 2 a2!cos2 u

$@a2 1 ~b2 2 a2!cos2 u#2 1 ~a2 2 b2!2 sin2 u cos2

Nu~u! 5
~a2 2 b2!sin u cos u

$@a2 1 ~b2 2 a2!cos2 u#2 1 ~a2 2 b2!2 sin2 u cos2
malized to the device dimension. According to the device
parameters, we take a modulation of 50%, which means
a 5 1.5 and b 5 1. Figure 3 shows the convergence of
D(0) (transmitted diffracted field) when N is increased.
We notice that the convergence obtained with the FFF
method is faster than the one obtained with the classical
differential theory, which becomes clear when N > 35.
Moreover, the relative discrepancy between the FFF
method values and the fictitious source method ones are
below 1% as soon as N > 46. Figure 4 shows the differ-

ential cross-section graph with the fictitious source
method and with the FFF method for N 5 50. The aver-
age relative discrepancy is approximately 2.5% for points
such as values over unity. The cross-section field map
(Fig. 5) shows that an important index gap implies impor-
tant fluctuations of the field in the elliptical cross-section
cylinder; that is why several development components are
needed (N . 50).

2
, (38)

2
. (39)
u%1/

u%1/
Fig. 3. Convergence of a differential cross section evaluated to
0° according to truncation order.

Fig. 4. Differential cross section according to the angle coordi-
nate D(u).
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B. Numerical Contamination and S-Matrix Propagation
Algorithm
The T-matrix propagation algorithm has a limitation ow-
ing to the loss of digits during the numerical integration.
In fact, this algorithm does not work well when it is ap-
plied to devices with deep modulated areas and low per-
mittivity values. The arguments of the used Hankel
functions Hn

1 are kjr. But these functions become singu-
lar when r → 0. Moreover, the higher the n subscripts
are, the higher the functions’ values are, for a constant ar-
gument. Thus, when the N order is high, a loss of digits
may appear, since the functions’ values exceed the num-
ber memory size (16 bits). The occurrence of unbounded
blocks of the T matrix implies that this loss of digits can
increase during the integration process. That is why an
important depth of the modulated area produces numeri-
cal contamination. For instance, when the modulation is
200% (b 5 1 and a 5 3), with n1 5 2 (n2 5 1), the di-
vergence of D(0) occurs as soon as N 5 38. However,
when n1 5 5, the divergence occurs for N > 41.

To improve the convergence of the results, the S-matrix
propagation algorithm is used. The modulated area is di-
vided into M slices. The integration through each slice
provides a T matrix from which we deduce a S matrix de-
fined by

;j P @2, M#, S ]

Bh,n
~ j !

]

Ah,n
~1 !

]

D 5 S S11
~ j ! S12

~ j !

S21
~ j ! S22

~ j !D S ]

Bh,n
~1 !

]

Ah,n
~ j !

]

D .

(42)

All blocks of this matrix are well conditioned. Briefly, the
T matrix links the fields in medium (1) and the fields in
medium (2), and the S matrix links the scattered field and
the incident field. The S-matrix blocks of the jth slice are
expressed according to ( j 2 1)th slice’s ones and the
T-matrix blocks of the jth slice:

Fig. 5. Cross-section field map.
S22
~ j ! 5 S22

~ j21 !@T11
~ j ! 1 T12

~ j !S12
~ j21 !#21,

S12
~ j ! 5 @T21

~ j ! 1 T22
~ j !S12

~ j21 !#@T11
~ j !

1 T12
~ j !S12

~ j21 !#21. (43)

At the end of the integration across the modulated area,
we obtain the S matrix of the whole scattered device.
Thus the diffracted fields read as

S ]

Ah,n
~1 !

]

D 5 S22S ]

Ah,zi
n exp~2inu i!

]

D ,

S ]

Bh,n
~2 !

]

D 5 S12S ]

Ah,zi
n exp~2inu i!

]

D . (44)

We expect that dealing with a complex permittivity
would increase the numerical contamination. This is a
guess based on our experience in grating theories that use
the FFF method in a Cartesian coordinate system.6 In
this coordinate system, the fields are expressed by
Fourier–Rayleigh developments. A complex permittivity
implies that the field developments contain exponential
functions linked with evanescent waves. Thus high ar-
guments lead to high function values and worsen the con-
tamination problems. To be precise, in a cylindrical co-
ordinate system, numerical contamination occurs with an
elliptic cross-section cylinder filled with aluminum (n1
5 1.3 1 i7.6) for l 5 0.63 and, for example, when a
5 1.5 and b 5 1 (u i 5 0). When the S-matrix propaga-
tion algorithm is applied with M equal to 10, we obtain a
good convergence with respect to N. The convergence
test illustrated in Fig. 6 shows a more important differ-

Fig. 6. Convergence of a differential cross section evaluated to
0° according to truncation order.

Fig. 7. Differential cross section according to the angle coordi-
nate D(u).
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ence between the two methods for high orders than in the
previous test. The corresponding differential cross-
section graph for N 5 40 is shown in Fig. 7.

C. Study on Other Cross-Section Shapes
From now on, we always use the S matrix propagation al-
gorithm. We extend the study to other cross-section
shapes. The first device is made of two identical circular
cylinders symmetrically centered on the x axis (Fig. 8).
The distance between the two centers is denoted 2d, and
their radius is R. Moreover um is the maximal polar
angle of a point on the circle centered at x 5 d, and the
corresponding radius is rm . It is interesting to notice
that the continuation of Nu

2 (Nr
2 and NrNu) is different

from the previous one. We cannot use Eq. (14) for u
5 0 to 2p; that is why we choose to apply two new differ-
ent continuations.

Fig. 8. Device made of two identical circular cylinders.

Fig. 9. First extension of Nu
2.

Fig. 10. Convergence of a differential cross section evaluated to
315° according to truncation order.
First, the circle is divided in two integration layers:
The first one lies between d 2 R and rm , and the second
one lies between rm and d 1 R. In fact, the product
NrNu changes its sign across the circle with radius rm .
In one of the two layers, Nu

2 is extended with Eq. (14) for
u P @2p, 2p 1 um# ø @2um , um# ø @p 2 um , p#.
Elsewhere, Nu

2 is extended to unity. This is illustrated in
Fig. 9. This first extension is not r dependent. Conse-
quently, the Nu

2, Nr
2, and NrNu Toeplitz matrices are cal-

culated only once before the numerical integration, which
results in saving computation time. Figures 10 and 11
show the results for d 5 4.5, R 5 3, n1 5 1.5, n2 5 1,
and u i 5 245°.

The second extension is r and u dependent, but the Nu
2

function increases more gently. In fact, the modulation
area is divided in three integration layers. Nu

2 is defined
only on four points. Elsewhere, the extension is made of

Fig. 11. Differential cross section according to angle coordinate
D(u).

Fig. 12. Second extension of Nu
2.

Fig. 13. Convergence of a differential cross section evaluated to
315° according to truncation order.
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straight lines. The Nu
2 functions for the various layers

are illustrated in Fig. 12. We expect that the conver-
gence with respect to N with this second extension will be
a little faster than with the first one. This is confirmed
in Fig. 13.

The last studied device is simply a circle with radius R
and center with (d, u0) polar coordinates (see Fig. 14).
The maximal angle (in relation with u0) defined on the
circle is still denoted um . The chosen continuation is the
same as the first one used for the previous device. The
convergence test with respect to N (Fig. 15) is shown for a

Fig. 14. Device made of one circular cylinder.

Fig. 15. Convergence of a differential cross section evaluated to
275° according to truncation order.

Fig. 16. Differential cross section according to angle coordinate
D(u).
cylinder with n1 5 1.5 (n2 5 1), d 5 4, u0 5 0°, R 5 1
and u i 5 290° (l 5 1). We have verified that the differ-
ential cross-section (Fig. 16) graph remains unchanged
when the circle location changes.

6. CONCLUSION
The fast Fourier factorization method, which was devel-
oped for solving diffraction of light by periodic devices
such as gratings, has been extended to apparently non-
periodic devices such as cylinders, thanks to the fact that
these objects are indeed periodic with respect to the an-
gular (u) coordinate. The fast convergence of the method
has been shown on various examples.

Although the existence of numerical contamination was
not evident, since in the present problem no evanescent
order exists, the use of the S-matrix propagation algo-
rithm has turned out to be necessary. This comes from
the growing of some Bessel functions with complex argu-
ments, during the integration process. Combining both
methods has resulted in a theory capable of analyzing dif-
fracting objects described in cylindrical coordinates with
the same success as was previously done for periodic de-
vices described in Cartesian coordinates.

The next stage of this work will be to generalize these
equations to the conical diffraction case that implies an
important increase of the matrix sizes and, consequently,
of the computing time. This future study would permit
one to determine the propagation modes for new micro-
structured optical fibers.

The successful extension of the FFF method to cylindri-
cal coordinate provides hope of extending it to spherical
coordinates, in view of deriving a theory able to analyze
any three-dimensional arbitrary object.
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