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We present a numerical method based on the method of the fictitious sources to
model one or several inclusions of arbitrary shape in stratified media. Our aim is
to propose an efficient numerical method for the modelling of plasmonic devices.
Indeed, metals impose rapid decays of the electromagnetic fields that are often
a problem for methods based on a volume meshing. We give the theoretical basis
of the method and also some practical details of its implementation in order to
obtain an efficient numerical code. The efficiency of the numerical code is
illustrated by modelling a spherical open cavity in a metal layer and a hole in a
dielectric layer.

1. Introduction

The research field that is known as plasmonics is nowadays highly topical [1, 2]. This

field can be defined as being based on the use of surface and particle plasmon

resonances of noble metal in optics. Metals have long been considered as materials

that suffer from important losses and thus, whose range of application in optics is

limited. However, researchers have realized that one key issue in the domain of

nanophotonics would be the ability to control light at scales considerably smaller

than the wavelength. One of the major issues would be to tailor molecule emission [3].

With respect to this aim the localized plasmons of particles have attractive char-

acteristics. Even waveguides would be of interest if one wants to integrate optical

circuits with a higher density than with dielectrics [4]: the short propagation distance

would compensate the propagation losses.
Modelling with metals in optics has always been confronted with the difficulty

that the fields experience a rapid spatial exponential decay. Thus any numerical

method based on a regular mesh of space would face the dilemma that the mesh

should be fine enough to sample exponential decay but the number of unknowns

cannot be indefinitely increased due to computational time and available memory on

computers. Methods such as finite time domain differences, differential method of
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the grating theory, coupled dipole method and numerous others are all plagued by
this problem.

Another class of method is based on the assumption that the permittivity and
permeability of the objects are piecewise constant; i.e. the object is made of
homogeneous materials. It is well known that under this assumption it is possible
to transform the original volume problem into a surface problem [5]. One example
of this type of method is the surface integral method widely used for the modelling of
gratings [6], rough surfaces [7], etc.

In this paper we will consider another approach that was developed in the late
1980s by several groups and known as the multiple multipole method [8], method of
fictitious sources (MFS) [9] or method of auxiliary sources [10]. Historically the first
attempts to use this method in electromagnetism are due to Kupradze [11].
The method has been applied to several problems, including grating modelling [9],
photonic crystals design [12], etc. The interested reader can find in a recent review
article many developments of the methods that have been proposed since the original
pioneering work [13].

Our aim is to apply the method to the problem of a single inclusion of arbitrary
shape embedded in a stratified media. One of the main applications envisaged is the
modelling of a single hole in a metallic film that has been a subject of interest in
the last few years [14, 15] and whose modelling still deserves some additional work.
For example, the shape of the cross-section of a single hole, the local density of
states or the emission of an atom located in the hole are still to be theoretically
investigated.

2. The method of fictitious sources: from a volume problem to a surface one

The basic idea of the method is that the field in a given medium (homogeneous or
stratified) can be represented by a sum of fields radiated by appropriate fictitious
sources located outside the considered medium. The exact location and the nature of
these sources can be chosen almost freely. It gives to the method an important
flexibility, but the numerical efficiency is dependent on the choices. The fictitious
sources have no physical meaning and can be seen as a natural extension of the
secondary sources introduced by Huygens and taken up later by Fresnel [16].

Our approach relies on unquestionable theorems of functional analysis.
For conciseness, this aspect is not developed here, but the interested reader can
refer to [17].

Let us consider a diffraction problem by a 3D bounded homogeneous object
whose boundary is a closed surface C (figure 1) embedded in a stratified media. We
assume that C is of class C2, and we denote by n̂ the unit vector of the outward
normal. We call O1 and O2 the exterior and interior domains of C. The domain O2 is
filled with a material of permittivity "2 which is complex with a positive imaginary
part, while the domain O1 is filled with a stratified medium, i.e. a medium made of
a finite number of homogeneous layers. The interfaces of the layers are assumed to be
perfectly plane and parallel to the xOy plane. In the sequel, F and F inc will be used as
short notations for the components of both electric and magnetic fields. A known
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incident field F inc ¼ ðEinc,Hinc
Þ illuminates the object, and we look for the total

field F ¼ ðE,HÞ. From the Stratton–Chu formulae [5], it turns out that the electro-
magnetic field at any point can be deduced from the values of n̂� E and n̂�H
on C. Thus we will represent the field by the couple F of vector functions defined
on C, which is the unknown of the problem (�0 is the vacuum impedance):

F ¼ ðn̂� E, n̂� �0HÞ: ð1Þ

Ω1
Ω2

Ω1
Ω2

Ω1
Ω2

Finc

Fsc

z

z

z

x

x

x

F

r1,n

r1,n

C1

C1

C2

C1

C2

C

C

C

Figure 1. Top: schematic representation of the problem. The light grey object is lying in
a stratified medium made of two layers that are assumed to be infinite along the x axis and
the y axis. Middle: the fictitious sources inside the object are located on C1 and radiate in the
stratified medium surrounding the object. Bottom: the fictitious sources outside the object are
located on C2 and radiate inside the homogeneous medium filling the object.
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In the same way, the incident field can be represented by the couple of functions Finc

defined on C:

Finc ¼ ðn̂� Einc, n̂� �0H
inc
Þ: ð2Þ

Let us define the scattered field F sc as the difference between the actual total field and
the incident field:

F sc ¼ F� F inc: ð3Þ

A simple way to understand the method is to keep in mind that the problem is to find
the total field F such that:

(a) the scattered field F sc satisfies Maxwell’s equations in O1 and a radiation
condition at infinity,

(b) the total field F satisfies Maxwell’s equations in O2,
(c) the boundary conditions on the surface C of the scatterer are fulfilled.

Let us consider sources S1,n (n ¼ 1, 2, . . . ,N ) placed in O2 and which radiate fields
F1,n ¼ ðE1,n,H1,nÞ in the whole space supposed to be filled with the stratified media
(see figure 1). Since the sources are placed in O2, F1,n has no singularity in O1 and F1,n

verifies condition (a) above. Any linear combination
P

n c1,nF1,n will also
fulfil condition (a) and, for well chosen c1,n, this series can be regarded as an
approximation for F sc in O1. In the same way, we consider sources S2,n placed in O1

and radiating fields F2,n in the whole space supposed to be filled with the material
of permittivity "2. A linear combination

P
nc2,nF2,n of such fields fulfils

condition (b) and, if the c2,n are well chosen, can be regarded as an approximation
for F in O2. Denoting by F1,n and F2,n the boundary values of the fields F1,n and
F2,n on C, the continuity of the tangential components of the total field on C

(condition (c)) reduces to

Finc þ
X

n

c1,nF1,n �
X

n

c2,nF2,n ¼ 0: ð4Þ

From a theoretical point of view, one can define vector spaces for �, Finc, F1,n

and F2,n.
Thus, equation (4) is noting the decomposition of � on two bases F1,n and F2,n

according to

F ¼ Finc þ lim
N!1

XN

n¼1

c1,nðNÞF1,n ¼ lim
N!1

XN

n¼1

c2,nðNÞF2,n: ð5Þ

Note that the norm defined in this vector space involves surface integrals on C of the
tangential components of the fields F inc, F1,n, F2,n (the definition of the norm being
necessary to define the convergence in equation (5)).

Obviously numerical computations will necessarily involve a finite set of sources
and thus an incomplete base. Thus, for a number N of sources, the aim is to get the
coefficients c1,n and c2,n (depending on N ) which give the following norm its
minimum value DN:

DN ¼ min Finc þ
X

n¼1,N

c1,nðNÞF1,n �
X

n¼1,N

c2,nðN ÞF2,n

�����

�����: ð6Þ
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Once the coefficients c1,n and c2,n are known, the field in each region is given by

F sc �
X

n¼1,N

c1,nF1,n in O1 ð7Þ

and

F �
X

n¼1,N

c2,nF2,n in O2: ð8Þ

Note that a problem involving several inclusions can be modelled by adding a set of
sources for each and fulfilling the boundary conditions on each.

In the numerical implementation we use a least-squares algorithm in order
to minimize the norm (6) that has two interesting features. First, it allows us
to use non-square systems and to obtain a better accuracy for an identical
computational burden. Second the normalized error ~�N ¼ DN=kFinck provides a
good criterion on the precision of the solution.

3. Examples

To illustrate the method we will consider two different structures.
The first example consists of a spherical open cavity in a metallic layer. Similar

cavities have been realized and characterized recently [18, 19]. Here we will consider a
single cavity, while in the experiments the cavities were arranged in arrays but could
be considered as isolated cavities. From the modelling point of view it could be seen
as a spherical inclusion (made of vacuum) in a stratified medium. Here we have
considered a sphere of radius 350 nm whose centre is at x ¼ y ¼ z ¼ 0 and the
stratified medium is made of a single metal layer whose permittivity is �9:89þ 1:05i
and its interfaces are parallel to the x–y plane and located at z ¼ �400 nm and
z ¼ þ200 nm. Both substrate and superstrate are assumed to be in vacuum. Note
that given the radius of the sphere, it overlaps with the metal layer and the
superstrate, thus the cavity is open on its upper side.

The fictitious sources used to solve this problem are of two different natures.
The fictitious sources located outside the spherical inclusion are assumed to radiate
in the homogenous medium filling the inclusion (i.e. vacuum). In our case we have
chosen to make use of dipoles. On the other hand, the sources located inside the
inclusion are assumed to radiate in the stratified medium (but without the inclusion).
Here again we considered dipoles but as the environment is no longer homogenous
the radiated field is no longer given in a closed form. We used the method proposed
by Martin and co-workers [20] and extended it to the computation of the magnetic
field (as the tangential components of the magnetic field on the inclusion are also
required). A repartition of sources on spheres of radius 245 and 455 nm (resp. for the
internal and external sources) has been found to give accurate results for reasonable
computational burden. We used 640 fictitious sources on each sphere (two crossed
dipoles on each of the 320 points on the spheres) and the boundary conditions
are computed on 500 points on the spherical inclusion. With this configuration
we have about one point for each �=15ð Þ

2 area on the spherical inclusion. Thus, the

Modelling of a single object embedded in a layered medium 875
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least-squares problem consists in minimizing the error on the continuity of the two

tangential components of the electric and magnetic fields on 500 points (i.e. 2000

equations) by choosing 1280 amplitudes of the fictitious sources.
From a practical point of view the objects (inclusion and fictitious surfaces) are

meshed using conventional free or commercial software. Indeed the only requirement

is to have regularly spaced points and the normal to the surface at these points.

The use of standard software allows us to model a particle of any shape.
Figure 2 shows a map of the modulus of the electric field when the structure is

illuminated by a plane wave coming from the top of the figure, with a normal

incidence (with respect to the stratified media), linearly polarized along the x axis and

a wavelength equal to 800 nm. The enhancement of field inside the cavity shows that

a resonance of the cavity has been excited, but note that the parameters have not

been optimized with this aim.
In order to illustrate that point we have plotted on figure 3 the residual error on

each point of the embedded object. Note that the error is always less than 9� 10�2.
The second example is a single hole in a dielectric layer surrounded by air.

The hole is assumed to be invariant along z and has a circular cross-section with

radius 50 nm. As the structures we have in mind to model are nano-holes or nano-

objects for optical applications this is not really a limitation and is realistic for

actual devices. The thickness of the layer is 160 nm and the permittivity is 2.25.
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Figure 2. Modulus of the electric field in a nanocavity made of a spherical void inclusion in
a metallic (gold) layer. The structure is assumed to be illuminated by a plane wave propagating
in the �z direction, polarized along the x axis and with a wavelength equal to 800 nm.
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The considered wavelength is 400 nm. Note that the embedded object is a cylinder
whose edges have been rounded with a radius of 20 nm (the total height of the
rounded cylinder is 200 nm, see white dashed line in figure 4). The exact location and
shape of the upper and lower faces of the cylinder does not change the results as the
hole is assumed to be filled by air as are the substrate and superstrate, but it allows us
to avoid sharp edges that may cause numerical instabilities. We have checked that
1632 sources and 800 points on the object give satisfactory results. Figure 4 shows
the map of the modulus of the electric field when the structure is illuminated by a
plane wave incident from the top with normal incidence and linearly polarized along
the x axis.

4. Conclusion

We have presented an extension of the method of the fictitious sources to one or
several inclusions of arbitrary shape in stratified media.

We have sketched the theoretical basis of the method and given some practical
details of its implementation in order to obtain an efficient numerical code. The
method has been illustrated by modelling a metallic nanocavity made of a spherical
void inclusion in a metallic film and a circular hole in a dielectric layer.

Our aim in developing this method was to provide an efficient numerical tool
for modelling in the domain of plasmonics. Indeed, one of the main advantages of
the method is that the problem amounts to seeking the tangential components of the
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Figure 3. Normalized residual error on the boundary conditions. Each point on the sphere
inclusion has a greyish tinge given by the normalized error on the point.
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fields on the boundaries of the inclusion. Thus, contrarily to the methods using a
volume mesh we will not face very fine meshing due to the exponential decay of the
fields in the metals. Among the phenomena we envisage to model, extraordinary
transmission through subwavelength single holes comes first. The method would also
be of interest in a variety of topical problems in optics such as laser damage due to
local defects in thin film optical components, sensors based on particle plasmon
resonances or the role of the shape of particles in giant Raman scattering.
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