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We investigate dynamic effective anisotropy in photonic crystals (PCs) through a combination of an effective
medium theory, which is a high-frequency homogenization (HFH) method explicitly developed to operate for
short waves, as well as through numerical simulations and microwave experiments. The HFH yields accurate
predictions of the effective anisotropic properties of periodic structures when the wavelength is of comparable
order to the pitch of the array; specifically, we investigate a square array of pitch 2 cm consisting of dielectric
rods of radius 0.5 cm and refractive index n = √

6 within an air matrix. This behaves as an effective medium,
with strong artificial anisotropy, at a frequency corresponding to a flat band emerging from a Dirac-like point in
transverse magnetic (TM) polarization. At this frequency, highly directive emission is predicted for an electric
source placed inside this PC, and this artificial anisotropy can be shown to coincide with a change of character of
the underlying effective equation from isotropic to unidirective, with coefficients of markedly different magnitudes
appearing in the effective equation tensor. In transverse electric (TE) polarization, we note a second radical change
of character of the underlying effective equation, this time from elliptic to hyperbolic, near a frequency at which
a saddle point occurs in the corresponding dispersion curves. Delicate microwave experiments are performed in
both polarizations for such a PC consisting of 80 rods, and we demonstrate that a directive emission in the form
of a + (respectively, an X) is indeed seen experimentally at the predicted frequency 9.5 GHz in TM polarization
(respectively, 5.9 GHz in TE polarization). These are clearly dynamic effects since in the quasistatic regime the
PC just behaves as an isotropic medium.
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I. INTRODUCTION

Over the past 25 years, many significant advances have
created a deep understanding of the optical properties of
photonic crystals (PCs) [1–3], which are dielectric periodic
structures that prohibit the propagation of light, or allow it only
in certain directions at certain frequencies, or localize light
in specified regions. However, PCs not only display photonic
band gaps but more generally share a complex photonic band
structure displaying strong dispersion and anisotropy [4,5]
allowing for a number of interesting optical phenomena such
as superprism [6], self-collimation [7,8], and ultrarefractive [9]
features. Applied mathematicians try to capture the essence of
physical phenomena within a microstructured medium through
homogenization theories [10]. Unfortunately, these are usually
limited to the quasistatic regime and therefore cannot tackle
the dynamic effects listed above. A great advantage of homog-
enization, or effective medium, theories is that they replace
a possibly complicated microstructure with a single effective
medium, with the relevant physical properties encapsulated
by effective parameters in some “averaged” sense. Recently
[11], a dynamic homogenization theory has been developed
entitled high-frequency homogenization (HFH) that claims to
overcome this limitation of homogenization to low frequen-
cies. The HFH theory makes various predictions regarding
dynamic anisotropy, which are captured through changes in
the coefficients of a frequency-dependent tensor. Our aim is
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to explore two such effects and to compare with experiments,
thereby validating HFH as an efficient tool for interpretation
and design.

To distinguish HFH within the broader area of asymp-
totic methods, it focuses attention on the physics within
a supercell of side-length L, which is the long-scale, and
captures the fine details of field oscillations inside a much
smaller elementary cell of side length 2l [11]. In contrast
with classical homogenization theories [10], the wavelength
need not be large compared to l in order to perform the
asymptotic analysis, as the small parameter η = l/L only
requires the supercell to be much larger than its constituting
elementary cells. HFH is somewhat related to the method of the
effective mass tensor, well known in the solid state community
[12–14], although we stress that the former contains higher-
asymptotic terms. HFH also has connection with abstract
mathematical homogenization theories of periodic elliptic
operators [15,16].

In this article, we choose a specific photonic crystal
arrangement, then apply the asymptotic theory to gain insight
into how the anisotropy arises for an electric and a magnetic
source placed in its center. The theory gives predictions of
both the specific frequency and the shape of the resulting
fields in transverse magnetic (TM) and transverse electric (TE)
polarizations, which are then investigated through experiment.
The experiments confirm directive emission in the form of
a + (respectively, an X) in TM (respectively, TE) polarization
at a frequency corresponding to a flat band emerging from a
Dirac point in TM (respectively, a saddle point in TE) polar-
ization. We are unaware of similar TE and TM experiments
for a PC with dielectric fibers.
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FIG. 1. (Color online) Photo of the dielectric photonic crystal,
which consists of 80 parallel dielectric rods inserted in a square array
of holes drilled in hardwood plates at either end.

II. MATHEMATICAL SETUP OF THE PHYSICAL
PROBLEM

We consider a PC of dielectric fibers assembled as shown
in Fig. 1. We use rectangular Cartesian coordinates in space,
(x1,x2,x3) = (x,x3), with x the transverse coordinates and x3

taken along the fiber axes (i.e., perpendicular to the wood
plates in Fig. 1).

A. Transverse magnetic (TM) polarization

For the transverse magnetic polarization it is natural
to work in terms of the longitudinal electric field E(x) =
(0,0,E3(x)) exp(−iωt), where ω is the angular wave fre-
quency. This time dependence is assumed understood and
suppressed henceforth. In this TM polarization time-harmonic
solutions of Maxwell’s equations satisfy a Helmholtz equation
[3]:

(∇2 + ω2εrε0μ0)E3 = 0, (1)

where εr is the spatially varying relative dielectric permittivity
and ε0μ0 = c−2 with c the speed of light in vacuum. Moreover,
∇2 = ∂2

x1
+ ∂2

x2
is the Laplacian in transverse coordinates.

If we consider an infinite doubly periodic medium upon a
square lattice then this equation can be supplied with Floquet-
Bloch boundary conditions at the edges of a square periodic
cell, with side length of say 2l, given by

E3(l,x2) = eiκ1E3(−l,x2),

∂x1E3(l,x2) = eiκ1∂x1E3(−l,x2),
(2)

E3(x1,l) = eiκ2E3(x1, − l),

∂x2E3(x1,l) = eiκ2∂x2E3(x1, − l).

This is an essential step in constructing the dispersion curves
that characterise wave propagation through the medium and
yields the so-called band diagrams [3] as, for instance, shown
in Fig. 2. Equations (2) involve the Bloch wave vector κ =
(κ1,κ2) characterizing the phase shift as one moves from one
cell to the next. Restricting our analysis to a piecewise constant
dielectric permittivity describing a square array of circular
dielectric rods, the Helmholtz Eq. (1) needs to be solved in
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FIG. 2. Floquet-Bloch dispersion curves for a circular dielectric
inclusion of radius r = 0.5 cm and relative permittivity 6, surrounded
by air in a periodic cell of side-length 2l = 2 cm in TM polarization.
Solid curves are from FEM and dashed curves from the asymptotic
HFH.

each homogeneous phase within the periodic cell. In addition
to the Floquet-Bloch conditions Eq. (2), one has to ensure that
E3 and its Neumann derivative ∇E3 · n are continuous across
the circular boundary, where n is the outward unit normal to
the boundary.

B. Transverse electric (TE) polarization

In the transverse electric polarization, we now consider the
longitudinal magnetic field H(x) = (0,0,H3(x)) exp(−iωt) as
the unknown and Maxwell’s equations then lead to(∇T ε−1

r ∇ + ω2ε0μ0
)
H3 = 0, (3)

where ∇T = (∂x1 ,∂x2 ) denotes the transpose of the gradient in
transverse coordinates.

The Floquet-Bloch boundary conditions at the edges of the
periodic cell are as in Eq. (2) with the unknown E3 replaced by
H3. However, in the TE polarization one has to ensure that H3

and ε−1
r ∇H3 · n are continuous across the circular boundary,

where n is the outward unit normal to the boundary. The latter
boundary conditions are slightly more involved than for the
TM case.

III. HIGH-FREQUENCY HOMOGENIZATION

We now describe the essential steps behind the effective
medium theory (HFH) we use; the general development is in
Ref. [11] with an application to the TM electromagnetic case
in Ref. [17] for a doubly periodic array of infinite conducting
fibers (Dirichlet inclusions) and in Ref. [18] for three-phase
checkerboards.

In the present paper we address the case of dielectric fibers
in both TE and TM polarization. The basic idea is that the
behavior at the edges of the Brillouin zone, where standing
waves occur, encodes information about the local behavior and
multiple scattering between the cylinders. This local behavior
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is then modulated by a function on the long-scale that satisfies
an effective equation. All of this can be made rigorous and the
mathematical theory is in Refs. [11,17]. In brief, we consider
a square cell, of size 2l, that repeats to fill a supercell, of
size L, which encompasses (L/2l)2 cells within the transverse
plane. The discrepancy between scales is used to create a
multiple scales approach and we introduce microscopic and
macroscopic variables ξ = x/l and X = x/L, respectively,
and treat ξ ,X as being independent. The longitudinal electric
field E3(x) is written as E3(X,ξ ), and then expanded in terms
of a small parameter η = l/L � 1, so

E3(X,ξ ) = E
(0)
3 (X,ξ ) + ηE

(1)
3 (X,ξ ) + η2E

(2)
3 (X,ξ ) + · · ·

(4)

The longitudinal magnetic field is similarly expanded as
H3(X,ξ ) = H

(0)
3 (X,ξ ) + · · · , and the frequency as ω2 = ω2

0 +
ηω2

1 + η2ω2
2 + · · · . The leading order solution E

(0)
3 (X,ξ )

(respectively, H
(0)
3 (X,ξ )) is associated with a standing wave

eigenfrequency ω0 and is proportional to the associated
Bloch eigensolution on the short scale, which we call UE

0 (ξ )
(respectively, UH

0 (ξ )). This standing wave frequency, which
can be high, and the eigensolution, which can oscillate rapidly,
are easily found from the usual Bloch analysis that leads to
the dispersion curves. The leading-order electric and magnetic
fields are then given as

E
(0)
3 (x,ξ ) = f E

0 (X)UE
0 (ξ ),

(5)
H

(0)
3 (x,ξ ) = f H

0 (X)UH
0 (ξ ),

so the short scale, potentially highly oscillatory, field UE
0 (ξ )

(respectively, UH
0 (ξ )) is modulated by a long-scale function

f E
0 (X) (respectively, f H

0 (X)). The key point of the analysis
of Ref. [11] is to show that this long-scale field satisfies an
effective partial differential equation posed entirely on the
long scale:

T α
ij

∂2

∂Xi∂Xj

f α
0 + ω2

2ε0μ0f
α
0 = 0, for i,j = 1,2, (6)

with the tensor T α
ij = tαij [

∫
S
ρα(Uα

0 )2dS]
−1

. Here, α = E

in TM polarization, α = H in TE polarization, and ρE = 1,
ρH = εr . Furthermore, tαij ’s are given by annex problems set
on the periodic cell with diagonal entries

tαii =
∫ l

−l

∫ l

−l

aα
(
Uα

0

)2
dξ1dξ2 + 2

∫ l

−l

∫ l

−l

aα∂ξi
U1i

Uα
0 dξ1dξ2

+
∫ l

−l

∫ l

−l

∂ξi
aαU1i

Uα
0 dξ1dξ2, (7)

and off-diagonal entries

tαij = 2
∫ l

−l

∫ l

−l

aα∂ξi
U1j

Uα
0 dξ1dξ2

+
∫ l

−l

∫ l

−l

∂ξi
aαU1j

Uα
0 dξ1dξ2 for i �= j, (8)

where aE = ε−1
r and aH = 1, in TM and TE polarization,

respectively. The vector field U1(ξ ) in Eq. (8) is the solution of
a forced Helmholtz equation (see, e.g., Ref. [11]), and appears

within the first-order term of Eq. (4), such that

E
(1)
3 (X,ξ ) = f E

1 (X)UE
0 (ξ ; 
0) + ∇Xf E

0 (X) · U1
E(ξ ), (9)

for α = E, and likewise when α = H with H
(1)
3 (X,ξ ).

The short scale is completely encoded within the tensor T α
ij ,

which takes numerical values dependent upon the geometry,
material parameters, and standing wave frequency; crucially
it does depend upon ω0 (which obviously is different in
TE and TM polarizations) and so captures dynamic effects.
Equation (6) encapsulates the dynamic effective anisotropy
of the photonic crystal through the tensor T α

ij ; its detailed
derivation can be found in Refs. [11,17], and an interpretation
of T α

ij in terms of effective media is in Ref. [18]. There are
some subtleties associated with repeated eigenvalues that occur
when dispersion branches cross at a standing wave frequency.
In such cases Eq. (6) requires modification as detailed in
Ref. [17]. Note that there is no summation over repeated
indices for the tαii term. In the piecewise-constant case, the
structure of T α

ij depends strongly on the boundary conditions
associated with the inclusions; the results here, for instance,
are markedly different in the TE and TM cases, and also from
those of the Neumann and Dirichlet [17] cases corresponding
to perfecting inclusions in either polarization.

As we shall demonstrate, changes in the components of T α
ij

from positive to near zero or negative correspond to changes
in the behavior of the effective medium, and we can use this
understanding to interpret, and more importantly predict, when
specific physical effects might occur. Notably, the possible
transition to hyperbolic behavior [17] is reminiscent of recent
work on hyperbolic-like metamaterials [19–25].

IV. FEM VERSUS HFH DISPERSION CURVES FOR
STRUCTURED DIELECTRIC FIBERS

We now focus on the specific case of a dielectric rod of
relative permittivity 6 and radius 0.5 cm, surrounded by air
in a square cell of side-length 2l = 2 cm. This constitutes
a good model for one elementary cell of the PC shown in
Fig. 1. Initially we imagine an infinite structure made from a
doubly periodic array of this cell, thereby enabling us to apply
Floquet-Bloch conditions and hence draw band diagrams that
can display interesting features such as vanishing or negative
group velocity and band gaps in the transverse plane.

A. TM polarization

Figure 2 shows the resulting dispersion curves computed
with finite elements (solid curves) and those obtained from
HFH (dashed curves) in transverse magnetic polarization. We
notably observe some missed crossing between the second,
third, and fourth curves at � point, which is reminiscent
of Dirac points in arrays of constrained (Dirichlet) points
[17]. We note that arrays of thin metal wires were studied
in the ’90s in conjunction with zero-frequency band gaps and
noncommuting limits [26].

The HFH curves result from asymptotics around the points
�, X, and M , and so are highly accurate there, which in
itself is a useful cross-verification of the effective medium
methodology. Incidentally, one can extend the domain of
validity by working with an elementary cell of 2 × 2 cylinders
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FIG. 3. Floquet-Bloch dispersion curves in TE polarization for
same PC parameters as described in the caption of Fig. 2. Solid
curves are from FEM and dashed curves from the asymptotic HFH.

and then one gets asymptotics along the middle of, say, the
path �M (see Ref. [17]). At this point some brief explanation
is required of the wave-number axis. In wave-number space
the Brillouin zone is a square, but the symmetry of the cell
allows us to treat an irreducible Brillouin zone, which is
a triangle joining the points � = (0,0), X = (π/2,0), and
M = (π/2,π/2). As is conventional we show the dispersion
curves for wave numbers taken around the edge of this triangle
�XM .

From Fig. 2 we see that a photonic band gap exists in TM
polarization, and this is known to allow for microcavity effects
if one makes a defect in the photonic crystal [27]. Further
effects can also be predicted from the dispersion curves; for
instance, one can achieve slow light [28] effects at symmetry
points of the Brillouin zone, where the slope of the dispersion
curves is zero. The behavior at the edges of the Brillouin zone
is key to interpreting the band diagram.

B. TE polarization

There is a radical change in the band structure when we
consider the other polarization case. From Fig. 3 we note that
the stop band is no longer present in TE polarization, and
nor is the near-Dirac cone. So, at first sight, one might say the
TM polarization seems to be more prone to interesting physical
effects. However, as we shall demonstrate the PC behaves like a
hyperbolic-type metamaterial near the frequency 5.9 GHz (1st
mode at X), at which a saddle point exists in TE polarization.
We note in passing that interesting physical phenomena occur
near saddle points, such as diverging density of states [19,29–
32], and this could be investigated with HFH theory, but this
goes beyond the scope of the present paper.

V. FEM VERSUS HFH MODES FOR PHOTONIC CRYSTAL

It is interesting to approximate the dispersion curves with
HFH theory. The resulting curves are shown as dashed lines in
Figs. 2 and 3. Classical homogenization can only capture the

FIG. 4. (Color online) The modulus of the longitudinal electric
field, E3, for a line source at 9.5 GHz placed in the center of a PC
with properties as described in the caption of Fig. 2: Panels (a) and (b)
show Comsol multiphysics computations using the effective medium
(HFH) theory where the T E

ij are for the 3rd mode at X, which are
T E

11 = −0.1548, T E
22 = −1.7773, and T E

12 = T E
21 = 0. Panel (a) shows

only the long-scale component |f E
0 | and (b) shows the leading order

asymptotic solution |E(0)
3 (x,ξ )|. In both panels the computational

region is surrounded by a layer of perfectly matched layers (to prevent
artificial reflections due to the truncation of an infinite domain), which
is outside the lines in these panels. Panel (c) shows the full Comsol
simulation using the Helmholtz Eq. (1). Clearly the agreement of
asymptotic and full computation is excellent both qualitatively and
quantitatively. Color scale is linear.

effective linear curves near the origin at the � point, whereas
HFH neatly approximates the solid curves, computed with
finite elements, even in the stop-band range of frequencies.
Departures from the solid curves away from the �, X, and M

points can be resolved by considering higher-symmetry points
in the first Brillouin zone [17].

A. TM polarization

The effective medium methodology allows us to investigate
a whole class of exotic effective behaviors associated with slow
modes, with the T E

ij coefficients encoding this information.
For instance, near the X symmetry point in Fig. 2, one gets
a mode (the third mode at 9.5 GHz) that displays strong
dynamic anisotropy as |T E

11| � |T E
22| with T E

12 = T E
21 = 0; the

values are T E
11 = −0.1548, T E

22 = −1.7773. This anisotropy
leads to the highly directive radiative pattern observed in the
full computations of Fig. 4(c), reminiscent of self-collimation
in scattering problems with photonic crystals. Computations
using the effective theory in Fig. 4(b) are remarkably accurate,
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FIG. 5. (Color online) The longitudinal magnetic field, H3, for a
line source at 5.9 GHz placed in the center of a PC with properties as
described in the caption of Fig. 2: Panels (a) and (b) show Comsol
multiphysics computations using the effective medium (HFH) theory
where the T H

ij are for the 1st mode at X, which are T H
11 = −8.6656,

T H
22 = 0.9209, and T H

12 = T H
21 = 0. Panel (a) shows only the modulus

of the long-scale component f H
0 and (b) shows the real part of leading

order asymptotic solution H
(0)
3 (x,ξ ). In both panels the computational

region is surrounded by a layer of perfectly matched layers (to prevent
artificial reflections due to the truncation of an infinite domain), which
is outside the lines in these panels. Panel (c) shows the real part of
H3 from full Comsol simulation using the Helmholtz Eq. (1). Clearly
the agreement of asymptotic and full computation is excellent both
qualitatively and quantitatively. Color scale is linear.

and the magnitude of the long-scale modulation function f E
0

is shown in Fig. 4(a). One can accurately predict using the
asymptotic theory that this highly directional behavior will
exist from the evident anisotropy of the tensor T E

ij . Another
key advantage of having an effective theory, valid for high
frequencies, is that the computations for the effective equation
are an order of magnitude faster than those of full computations
for the microstructured medium.

B. TE polarization

Self-collimation is not the only directional anisotropy
that can arise in the PC. In the other polarization case, we
achieve an X-shaped emission when T H

11 T H
22 < 0, in which

case the effective Eq. (6) describes that of a hyperbolic-
like metamaterial [33]. Here again HFH reproduces almost
perfectly the emission of a magnetic source inside the PC
computed with finite elements. This striking effect is shown

FIG. 6. (Color online) Result of microwave experiments for an
electric source (TM polarization) at 9.5 GHz placed in the center of
the PC. Color scale is in dB.

in Fig. 5. For simple geometries some gap-edge asymptotics
of defect modes can also be derived using a Green’s function
approach [34].

VI. MICROWAVE EXPERIMENTS

Now that we have HFH at our disposal as a design tool,
we can use it interactively with experiments to find the key
operating frequencies and material parameters for directivity,
among other effects. The predictions described thus far are
now explored with a novel set of experiments. In Figs. 6
and 7, we show experimental measurements for the photonic
crystal designed and characterized at the Institut Fresnel.
The structure shown in Fig. 1 is a PC of square symmetry
made of 80 dielectric rods (a 9 × 9 array with the central rod
removed). The rods consist of alumina powder and synthetic
resin, are 0.5 cm in radius and 300 mm in length, and their
relative permittivity was shown to be equal on average to 6

FIG. 7. (Color online) Result of microwave experiments for a
magnetic source (TE polarization) at 5.9 GHz placed in the center of
the PC. Color scale is in dB.
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(with up to 5 percent of inaccuracy) in Ref. [27]. This is the
experimental analogue of that used in the theory, except that
the computations for Figs. 4 and 5 are planar, corresponding
to the limiting case of infinitely long fibers, whereas the
experiments are three-dimensional; hence the discrepancy in
Fig. 6 (respectively, Fig. 7) versus those of Fig. 4 (respectively,
Fig. 5). Nonetheless, the directional anisotropy found in the
experiments is clear.

Figure 6 shows the modulus of the longitudinal component
of the electric field, |Re(E3)|, inside the crystal at the
frequency corresponding to that used in Fig. 4. This component
is carefully measured with a vectorial network analyzer
using a monopole probe when a small monopole antenna is
located at the center of the structure. To ensure excitation
and measurement of the component E3, both the emitting
monopole and the probe are aligned with the axis parallel
to the fibers. Simulations and measurements are indeed in
excellent agreement. The longitudinal electric field E3 in the
two scanned direction (x1,x2) is maximal along the central
lines (horizontal and vertical), making a cross as predicted by
HFH.

In the same way, Fig. 7 shows the modulus of the
longitudinal component of the magnetic field, |Re(H3)|, inside
the crystal at the frequency corresponding to that used in Fig. 5.
We now use a magnetic probe for excitation and measurement
of H3, with the emitting monopole and the probe aligned along
the axes of there fibers. Simulations and measurements are
once again in excellent agreement. The longitudinal magnetic
field H3 is maximal along the diagonal lines, making an X as
predicted by HFH.

VII. CONCLUSION AND APPLICATIONS

In this article, we have experimentally tested an effective
medium formulation for dielectric photonic crystals in trans-
verse magnetic (TM) and transverse electric (TE) polarization,
which is not constrained to the low-frequency limit. This is an
important step as this theory is now ideally placed to play a role
in practical interpretation and design. The HFH methodology
captures the dynamic nature of the anisotropy through the ten-
sor Tij , and unveils dynamic anisotropy at critical frequencies,
which leads to directive emission either along the x1 and x2

axes (in TM polarization) or the diagonals (in TE polarization).
In the former case the directive effect comes from an effective
tensor with a vanishing eigenvalue, while in the latter case, the
eigenvalues have opposite sign, indicating a hyperbolic-type
effective equation. Finally, Eqs. (1) and (3) can be used to
model problems of pressure acoustic, or antiplane shear, waves
with the density, bulk modulus, and shear modulus playing the
role of the permittivity. This suggests similar ultradirective
emission could be observed with arrays of fibres in other wave
areas.
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