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Plasmonic resonances in metallic nanoparticles are exploited to create efficient optical filtering functions. A finite
element method is used to model metallic nanoparticle gratings. The accuracy of this method is shown by com-
paring numerical results with measurements on a two-dimensional grating of gold nanocylinders with an elliptic
cross section. A parametric analysis is then performed in order to design efficient filters with polarization
dependent properties together with high transparency over the visible range. The behavior of nanoparticle gra-
tings is also modeled using the Maxwell–Garnett homogenization theory and analyzed by comparison with the
diffraction of a single nanoparticle. The proposed structures are intended to be included in optical systems that
could find innovative applications. © 2015 Optical Society of America
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1. INTRODUCTION

Metallic nanoparticles supporting plasmonic resonances can be
used to design optical functions, for instance, filtering proper-
ties, or chemical and bio-sensing [1,2]. Such systems offer
several advantages such as the possibility of controlling the op-
erating wavelength with the nature of the metal, the size of the
particles, the polarization of the illumination, etc. In this paper,
we focus on the design of a spectral filtering property in reflec-
tivity, i.e., the frequency selective mirror property. In particular,
challenges lie in obtaining a narrow reflection peak while keep-
ing absorption losses as low as possible and a transmission level
averaged over the visible range as high as possible.

Reflective color filters based on plasmonic resonators have
already been proposed in the literature. In [3], different arrays
of metallic nanodisks are deposited on a backreflector made of
silver and gold to print a color image at the optical diffraction
limit. Dense silver nanorod arrays are used in [4] to create re-
flective color filters at specific wavelengths depending on the
arrays’ geometry. Nevertheless, in these propositions, the overall
transmission remains low. Core–shell nanoparticles, made of
silica and silver and embedded into a polymer matrix, were pro-
posed in [5] to make transparent displays based on resonant
nanoparticle scattering. The considered filters have reflection
properties at defined wavelengths and global transparency over

the visible spectrum. However, the latter structure, based on
the scattering phenomenon, does not work as a mirror, but as
a display with a virtual image located in the reflecting structure.
High resolution color transmission filtering and spectral imag-
ing have also been achieved [6] where plasmonic nanoresona-
tors, formed by subwavelength metal–insulator–metal stack
arrays, allow efficient manipulation of light and control of
the transmission spectra. Also, highly transmissive plasmonic
subtractive color filters are proposed in [7] with a single opti-
cally thick nanostructured metal layer thanks to the counterin-
tuitive phenomenon of extraordinary transmission.

In this paper, the main objective is to design metallic nano-
particle gratings in order to obtain a filtering property for wave-
lengths in the visible range with relatively low absorption. First,
we present the formulation of the finite element method
(FEM) [8] chosen to model the considered structures and
whose accuracy has been checked by comparing it with the
Fourier modal method [9]. The relevance of this numerical tool
is shown by comparing full three-dimensional numerical calcu-
lations with measurements on fabricated samples. The numeri-
cal tool is then exploited to perform a parametric analysis of the
influence of geometric parameters and polarization on filtering
properties and absorption. Next, this parametric analysis is
used to propose optimized filtering systems with a high level
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of transparency on average in the visible spectrum. In addition,
different models are proposed to analyze the behavior of the
nanoparticle gratings. An analytical homogenization model
based on the Maxwell–Garnett approximation is faced to
the rigorous FEM calculations. Finally, the multipolar radiation
of a single nanoparticle is compared to the diffractive properties
of a grating consisting of the same nanoparticles.

The considered gratings are defined as two-dimensional
square arrays of metallic nanoparticles on a glass (SiO2) sub-
strate. The lattice constant of the array along the two directions
x and y is denoted by a. On each node of this array lies a gold
(Au) or silver (Ag) nanocylinder with an elliptic cross section of
height h and diameters d x and d y (along the x and y directions,
respectively). Note that for fabrication requirements an op-
tional indium tin oxide (ITO) thin film layer of height hITO
may be added on top of the substrate, and a second optional
attaching layer of titanium (Ti) of height hTi may also be added
to the bottom of the nanocylinder. Finally, a nanocylinder gra-
ting can be embedded into a SiO2 cover layer of height hcov
from the top of the nanocylinder. Figure 1 presents schemes
of the considered structures. Finally, the refractive indices of
the different materials for the simulations are taken from [10]
for SiO2, [11] for gold, [12] for silver, and [13] for Ti.

2. NUMERICAL MODELING

A. Finite Element Method Formulation
The FEM formulation used in this paper is described in [8].
This numerical method allows calculation in the time-
harmonic regime of the vector fields diffracted by any arbi-
trarily shaped crossed grating embedded in a multilayered stack.
The considered grating (Fig. 1) is placed in an air superstrate
(incident) medium with permittivity ϵ� � 1. The SiO2 sub-
strate is considered semi-infinite with permittivity ϵ−. All ma-
terials of the structure are considered nonmagnetic (μr � 1).
The time-harmonic regime with a exp�−iωt � dependence is
considered where the frequency ω is related to a wavelength
λ � 2πc∕ω in vacuum and c is the speed of light in vacuum.
The grating is illuminated with a plane wave E0 �
A0 exp�ik� · x�, where the wave vector k� is defined by
‖k�‖ � k� � k0 � ω∕c and the two angles θ0 ∈ �0; π∕2�
and ψ0 ∈ �0; 2π� (k� is in the xz plane if ψ0 � 0 and k�

is in the yz plane if ψ0 � π∕2 ). This incident plane wave
is p-polarized if the electric field is inside the incident
plane (see left panel of Fig. 2) and s-polarized if the electric
field is perpendicular to the incident plane (see right panel
of Fig. 2).

We want to retrieve the total electromagnetic field �E ;H �
solution of the Helmholtz equation

∇ × ∇ × E � k20μ0ϵE � 0; (1)

where the diffracted field defined as E d � E − E0 satisfies
an outgoing wave condition and where the field E is quasi-
periodic along the two directions x and y. The vector field
E d diffracted by the structure is calculated using the solution
of an ancillary problem that corresponds to the associated
multilayered diffraction problem (that is, without any diffrac-
tive element and with the same condition of illumination). This
intermediate solution is then used as a known vectorial source
term whose support is localized inside the diffractive element
itself. Hence, the total field E of the structure is compound of
three fields: (i) the diffracted field E d calculated using the
FEM; (ii) the incident plane wave E0; and (iii) the plane waves
diffracted by the multilayer structure (the diffracted field asso-
ciated with the ancillary problem that is compound of the
transmitted and reflected waves of the multilayer structure).
Because the total field E has Bloch-boundary conditions along
the two directions of periodicity, the computation domain is
then reduced to a single cell of the grating through the set
�kx; ky� ≡ �k�x ; k�y � imposed by the incident plane wave.
[Note that the whole structure of the two-component wave vec-
tor �kx; ky� has the same grating periodicity; hence �k�x ; k�y � is
denoted by �kx; ky�.] The implementation of those specific
boundary conditions adapted to the FEM is described in
[14]. As mentioned above, the diffracted field E d should also
satisfy an outgoing wave condition in the z direction. Thus, a
set of perfectly matched layers (PML [15]) is introduced to
truncate the substrate and superstrate along the z axis.
Indeed, the diffracted field that radiates from the structure
toward the infinite regions decays exponentially inside the
implemented PML along the z axis.

Once the values of the fields in the whole structure are ob-
tained, they are used to compute a complete energy balance of
the bi-periodic grating. It is based on (i) the calculation of the
diffraction efficiencies of each reflected and transmitted order
along the gratings’ two directions of periodicity through a
double Rayleigh expansion of the fields and (ii) the calculation
of the normalized losses of each part of the diffractive (absorp-
tive) element of the cell. This energy balance is then used to
check the accuracy and self-consistency of the whole calculation
because the sum of the different components of the energy
balance should be equal to 1.

Fig. 1. Schemes of the considered nanoparticle gratings.

Fig. 2. Scheme of the illumination conditions for wave vector k�

lying in the xz plane (ψ0 � 0).
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The described method has been implemented into the fol-
lowing free FEM software: Gmsh [16], a mesh generator and
visualization tool, and GetDP [17], a finite element library.
Numerous comparisons with the Fourier modal method [9]
have been performed to check the accuracy of the present
FEM method.

B. Comparison with Measurements
Samples have been fabricated in order to check the relevance of
the numerical tool. We use a commercial SiO2 substrate
covered by a 40 nm ITO layer. This ITO layer is used to evacu-
ate charges during the lithography process. On this ITO thin
film, a 4 nm Ti adhesion layer and a 30 nm gold film were
deposited by electron beam evaporation. The gold nanocylin-
ders are then realized by electron beam lithography. Scanning
electron microscopy (SEM) imaging of the realized gratings are
then performed that allow measurements of dimensions of the
realized elliptical nanocylinders. Three gold nanocylinder gra-
tings with different square periodicities have been fabricated: S1
(a � 200 nm), S2 (a � 250 nm), and S3 (a � 300 nm). The
elliptical diameters d x and d y of the nanocylinders for the three
fabricated structures S1–S2–S3 are approximately 80 and
120 nm, respectively (see Table 1 for the exact dimensions).
Figure 3 shows a scheme and a SEM image of one of these
gratings.

The optical characterization of the samples is based on the
transmission measurement. A polychromatic source (Xe lamp)
illuminates the samples through a monochromator and a polar-
izer. The source illuminating the samples is then almost mono-
chromatic (400–1100 nm wavelength) and is linearly polarized.
The transmission measurement is then performed with a home-
made angulo-spectral optical reflectivity and transmissivity
bench. Notice that this transmission measurement is normal-
ized with respect to transmission for the bare SiO2 substrate.

Transmission measurements were performed for an incident
beam in normal incidence with an electric field polarized along
the y direction (s polarization) and the x direction (p polariza-
tion) for wavelengths ranging from 500 to 1100 nm. These

measurements are compared with the simulation results, where
the gratings’ transmission efficiencies have been also normalized
by the transmission of the bare SiO2 substrate. Notice that the
Au refractive index considered in these simulations for compari-
son is determined frommeasurements on the samples (there is a
small difference from data in [11]). Figure 4 shows excellent
qualitative and quantitative agreement and thus the relevance
of the numerical tool employed to design plasmonic filters. The
small remaining differences between the measurements and
calculations can be attributed to the deviations in the shape
of the fabricated cylinders, for example, slanted walls or
rounded corners.

3. PARAMETRIC ANALYSIS AND DESIGN OF
FILTERING PROPERTIES

In this section, the influence of the different system parameters
(nature of the metal, geometric parameters, and illumination
polarization) is analyzed in the case of an illumination with
oblique incidence (θ0 � 45°). This analysis is used to design
an optimized structure for filtering properties. Here, the chal-
lenges are to obtain a choice of resonances in the visible
spectrum with a minimum of optical losses or a maximum
of averaged transmission.

From results presented in the previous section, it appears
that structures of Au nanocylinders lead to resonances of
around 700 nm. Hence, Ag nanocylinders are considered in
Subsection 3.A to address the whole visible spectrum for
reflectivity peaks. Next, in Subsection 3.B, the presence of
absorption is analyzed starting from the reference structures
S1–S2–S3 of Au nanoparticles. Finally, in Subsection 3.C,
optimized structures are proposed.

A. Influence of Cylinder Diameters and Incident
Polarization on the Resonance Wavelength
The geometries considered in this subsection are similar to the
ones of Subsection 2.B (see Fig. 5) with the same ITO and Ti
layers. The differences are: a 300 nm SiO2 cover layer in order
to prevent the oxidation of the Ag nanocylinders; square perio-
dicity of the gratings fixed to a � 200 nm; Ag elliptical nano-
cylinders with axes d x fixed to 100 nm and d y varying from 100
to 180 nm with a 20 nm pitch (type S4 structures). Here, Ag
nanocylinders have been introduced in order to address the
whole visible spectrum with plasmonic resonances.

Table 1. Cylinder Dimensions of the Three Fabricated
Structures

a (nm) dx (nm) dy (nm)

S1 200 91 129
S2 250 87 125
S3 300 84 122

Fig. 3. Scheme and SEM imaging of the fabricated structures
S1–S2–S3.

Fig. 4. Comparison between the FEM results (dashed) and the mea-
surements (solid) in transmission for the three fabricated samples
S1–S2–S3.
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Simulations are performed for a plane wave with a wave vec-
tor lying in the xz plane (ky � 0), where the angle of incidence
with respect to the normal of the substrate is θ0 � 45°. Both
polarizations are considered (see Fig. 5). Simulations are per-
formed for wavelengths spanning the visible range (380 to
780 nm). Figure 6 shows the transmission efficiency in the
specular order for the various d y diameters, for p and s polar-
izations. The corresponding efficiencies in the reflection specu-
lar order are reported in Fig. 7. In the present case of an
incident plane wave with a wave vector lying in the xz plane
(ky � 0), the electric field “sees” the small axis d x of the ellip-
tical nanocylinder when the plane wave is p-polarized.
However, when the plane wave is s-polarized, the electric field
“sees” the large axis d y. One can observe in Figs. 6 and 7 that
the resonance occurring for p polarization is at a lower wave-
length and is less efficient than the one that occurs for s polari-
zation. The more the incident electric field meets a high

quantity of metal, the more the resonance is pronounced
and redshifted. Also, in the two cases of polarization, increasing
d y broadens the reflection peaks, which is consistent with an
increasing quantity of metal. While increasing d y, one can ob-
serve that the reflection peak in p polarization is blueshifted,
while the one in s polarization is redshifted. Hence the two
resonances in the two polarizations are not totally independent,
but the general tendencies described above remain valid. These
effects may allow us to manipulate the resonances observed in
those elliptical nanocylinder gratings and to select wavelengths
for which the reflection peaks depend on the incidence plane of
the waves and their polarization. Hence, the first challenge to
obtain a resonance at the desired wavelength in the whole
visible spectrum might be addressed.

B. Absorption and Influence of Geometrical
Parameters
The second challenge is to reduce absorption in order to obtain
a high transmission when averaged on the whole visible spec-
trum. The influence of the quantity of metal is thus investi-
gated in detail.

As a preliminary, we observe that, from the simulated total
energy balance obtained for structure S2 (see Fig. 8), losses are
important inside the ITO and Ti layers. Since these materials
play no role in the filtering function, suppressing ITO and Ti
layers should be addressed in order to reduce Joule losses. The
investigation is now performed with gold nanocylinder gratings
directly deposited on the SiO2 substrate.

The influence of the quantity of metal is investigated by
increasing the filling fraction of metal using two groups of
structures. For the first group of structures S5 (left panel of
Fig. 9), the size of the nanocylinders is increased for a fixed
lattice constant a. Conversely, for the second group of struc-
tures S6 (right panel of Fig. 9), the size of the lattice constant
a is increased for a fixed nanocylinder dimension. Also, to sim-
plify the number of parameters of influence, nanocylinders
with circular cross sections are considered here. The plane wave
illuminating the structures has a wave vector lying in the xz
plane (ky � 0) with an angle of incidence fixed to θ0 � 45°
and is s polarized.

First, the influence of the nanocylinder’s diameter on the
total energy balance spectrum is analyzed. Notice that the
propagative diffraction efficiencies higher than the �0; 0� specu-
lar orders are omitted since they are found to be negligible. The
square pitch of the grating is fixed with a � 250 nm; the gold
nanocylinder height is fixed to h � 30 nm; and the group of

Fig. 5. Scheme of the structure S4 for the considered conditions of
illumination.

Fig. 6. Efficiency in the transmission specular order for the S4
group of structures.

Fig. 7. Efficiency in the reflection specular order for the S4 group of
structures.

Fig. 8. Decomposition of the total energy balance for s polarization
for the structure S2.
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structures S5 have diameters that vary from 30 to 200 nm with
10 nm pitch. The left panel of Fig. 10 shows the reflection
efficiency in the specular order in the visible range (380 to
780 nm) as a function of the nanocylinder’s diameter. One
can observe that as the nanocylinder’s diameter increases, the
reflection peak intensity is magnified, redshifted, and broad-
ened. Again, one can possibly choose the operating wavelength
of the filter by selecting the appropriate diameter.

Second, the influence of the lattice constant a on the total
energy balance spectrum is analyzed. The nanocylinder’s geom-
etry is then fixed with a height h � 20 nm and a diameter
d x � d y � 120 nm. The square periodicity a is now spanning
the range (150 to 300 nm) with a 25 nm pitch (group of struc-
tures S6). The illumination configuration remains unchanged
(incident angle of 45°, ky � 0, and s polarization). The right
panel of Fig. 10 presents the spectrum of the reflection
efficiency in the specular order over the visible range
(380–780 nm) as a function of the lattice constant a. For fixed
nanocylinder dimensions, increasing the grating square perio-
dicity leads to slight variations of the central wavelength of the
reflectivity peaks, which confirms that resonance frequency is
mainly governed by particle diameter. Moreover, the intensity
decreases, and the peak is sharpened with the increase of the
grating’s periodicity. This result is fully consistent with the
study on the influence of diameter.

Combining these two parametric investigations leads to four
conclusions: (i) the resonance frequency is mainly governed by
nanocylinder dimensions; (ii) the ratio of the nanocylinder’s
cross section surface over the lattice unit cell surface a2 mainly
governs the resonance intensity and absorption; and conclu-
sions (iii) and (iv) are noted in the next paragraph.

Before presenting optimized structures, it is stressed that, in
the configurations S5 and S6, efficient reflectivity peaks occur

for wavelengths around 650 nm. If the structure is embedded
into SiO2 (e.g., structures S2 in Section 2), then the observed
peak in reflection is redshifted and will occur only in the
extreme red part of the visible spectrum around 700 nm
(for structures S2). Thus, as conclusion (iii), it appears neces-
sary to consider the solution based on Ag proposed in
Subsection 3.A to blueshift the resonances since the plasma fre-
quency of Ag occurs at lower wavelengths. Finally, as pointed
out at the beginning of this subsection, high absorption appears
in ITO and Ti layers (Fig. 8), and thus optimization should be
performed for nanocylinders standing directly on a SiO2

substrate [conclusion (iv)].

C. Optimized Design with Silver Elliptical
Nanocylinders
In this section, we propose two different designs of silver ellip-
tical nanocylinder gratings embedded in SiO2, leading to peaks
in the specular reflectivity in the visible range. The elliptical
cross section of the nanocylinders allows two different peaks
at two different wavelengths for a unique structure, depending
on the polarization of illumination. The proposed filters also
possess properties of global transparency on the visible
spectrum.

The first proposed filter F1 is comprised of nanocylinders of
30 nm height (left panel of Fig. 11). The ellipse’s diameters are
d x � 80 nm and d y � 60 nm. The grating is embedded into
SiO2; the substrate is SiO2, and a SiO2 cover layer of 200 nm is
added. The square periodicity a of the grating is fixed to
200 nm. The incident wave vector lies either in the xz plane
(ky � 0) or in the yz plane (kx � 0), with an angle of incidence
fixed to θ0 � 45°, and both p and s polarizations are consid-
ered. Figure 12 shows the different components of the energy
balance for the filtering structure F1. This geometry leads to
reflection peaks in the specular order centered at two different
wavelengths (525 and 590 nm) depending on the incidence
plane and polarization.

The second proposed filter F2 is made of nanocylinders with
40 nm height (right panel of Fig. 11). Ellipse diameters are
d x � 100 nm and d y � 60 nm. The grating is embedded into
SiO2 (cover layer of 200 nm and substrate). The square perio-
dicity a of the grating remains 200 nm, and the illumination
conditions are the same as those for F1. Figure 13 shows the
different components of the energy balance for grating F2.
Here, reflection peaks are obtained at the two different wave-
lengths, 520 and 633 nm. In both cases, the averaged transmis-
sion over the whole visible spectrum is above 64%, which

Fig. 9. Scheme of the structures S5 (left panel) and S6 (right panel).

Fig. 10. Left panel: Reflection efficiency in the specular order for
structures S5. Right panel: Reflection efficiency in the specular order
for structures S6.

Fig. 11. Schemes of the optimized filters F1 (left panel) and F2
(right panel).
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ensures correct transparency. This is confirmed by the absorp-
tion spectra of the two structures shown in Fig. 14.

4. HOMOGENIZATION OF NANOCYLINDER
STRUCTURES

In this section, the properties of nanoparticle gratings are mod-
eled using Maxwell–Garnett homogenization. A detailed dis-
cussion of this homogenization of elliptic nanoparticles can
be found in [18] and more recently in [19].

In the present case, we consider anisotropic inclusions for
which the effective permittivity components ϵj�j � x; y; z�
are given by

ϵj − ϵm � ϵm
f �ϵp − ϵm�

ϵm � Lj�ϵp − ϵm�

�
1 − Lj

f �ϵp − ϵm�
ϵm � Lj�ϵp − ϵm�

�
−1

:

(2)

Here, ϵp and ϵm are the permittivity of the particles and the
surrounding medium, respectively; f is the filling fraction of
metal; and Lj are the components of the depolarization dyadic

in the corresponding axis �j � x; y; z�. We consider a cylindri-
cal inclusion of an elliptical cross section oriented in the z di-
rection embedded into a rectangular box. The height of the
rectangular box is equal to the height 2h of the cylinder (see
Fig. 15). The basis of the rectangular box is the square unit
cell of a lattice. Hence the filling fraction f is just the ratio
of the cylinder section (an ellipse of radius Rx � d x∕2 and
Ry � d y∕2) with respect to a2, i.e., f � πRxRy∕a2.

The calculation of depolarization components is reported in
Appendix A in both cases: cylinders with circular cross section
(Appendix A.1) and elliptic cross section (Appendix A.2). After
computing the different depolarization factors, the effective
permittivity components are calculated from Eq. (2).

This effective model has been applied to a square unit cell
(a � 200 nm) composed of a silver cylinder of elliptical cross
section with radii Rx � 40 nm and Ry � 30 nm and height
2h � 30 nm. The considered background medium is SiO2.
Hence, this unit cell represents the grating corresponding to
structure F1. The following depolarization components are ob-
tained using Eqs. (18) and (22): Lx � 0.16, Ly � 0.24, and
Lz � 0.60. The corresponding effective anisotropic relative
permittivity components are reported in the left panel of
Fig. 16. One can check that the effective permittivity compo-
nents show resonances around 480 and 575 nm. Next, the
multilayer corresponding to structure F1 is considered. The
multilayer is composed of (from top to bottom): (1) an incident
medium (air); (2) a 200 nm SiO2 layer corresponding to the
cover layer; (3) a 30 nm homogenized layer of effective permit-
tivity given in the left panel of Fig. 16 corresponding to the
grating; and (4) a SiO2 substrate. The reflection and transmis-
sion coefficients have been calculated for an incident plane
wave with an incident wave vector that lies either in the xz
plane (ky � 0) or in the yz plane (kx � 0) with an angle of
incidence fixed to θ0 � 45° and for wavelengths spanning
the visible range. Both p and s polarizations have been
considered and compared to the rigorous FEM calculation
of Subsection 3.C. This comparison is shown in Fig. 17.

Fig. 12. Reflection (left panel) and transmission (right panel)
efficiencies in the specular order for the structure F1.

Fig. 13. Reflection (left panel) and transmission (right panel)
efficiencies in the specular order for the structure F2.

Fig. 14. Absorption in the nanocylinders for structures F1 (left
panel) and F2 (right panel).

Fig. 15. Scheme of the considered unit cell.

Fig. 16. Effective anisotropic relative permittivity components for
the unit cell of structures F1 (left panel) and F2 (right panel).
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The same reasoning has been applied to structure F2 and
leads to the following depolarization components: Lx �
0.16, Ly � 0.32, and Lz � 0.52. The corresponding effective
relative permittivity is plotted in the right panel of Fig. 16, and
presents resonances of around 440 and 575 nm. The reflection
and transmission coefficients for the effective multilayer are
compared to FEM results in Fig. 18.

One can observe that the homogenization leads to resonan-
ces that are in relative agreement with the rigorous FEM results,
except for a shift of about 50 nm for the resonance wavelength.
This shift can be attributed to the effect of the finite size of the
particles because it can be checked numerically that this shift
decreases together with the particle size. These resonances are
present in both the effective permittivity components and the
spectra of transmission and reflection. Hence, these homogeni-
zation results provide useful tendencies with much faster com-
putation time and can be used to design filtering properties.

Notice that a similar homogenization model can be derived
in the more complex situation where the particles stand directly
on a substrate without a cover layer (for instance, structures S5
or S6). For such a case, the calculation of the depolarization
factors is given in Appendix A.3.

5. DIFFRACTION BY A SINGLE
NANOCYCLINDER

In this last section, the contribution of the single nanoparticle
to the electromagnetic behavior of the grating is analyzed. To
that end, the problem of plane wave scattering by a single nano-
particle is solved numerically using the FEM via an approach
similar to that in Subsection 2.A by changing Bloch–Floquet

boundary conditions to perfectly matched layers. Finally, a
multipole expansion of the diffracted field is performed and
discussed.

Consider a nonmagnetic scatterer of arbitrary shape with
relative permittivity εbs that is embedded in a transparent non-
magnetic homogeneous background of relative permittivity εbr.
We denote by εr�x� the piecewise constant function equal to εbs
within the scatterer and εbr elsewhere. The scatter is enlighten
by a plane wave of arbitrary incidence and polarization E0. This
incident field, i.e., the field without the scatterer, is the solution
of the vector Helmholtz propagation equation in the resulting
homogeneous medium

∇ × ∇ × E0�x� � k20ε
b
rE0�x� � 0: (3)

We are looking for the total field E resulting from the
electromagnetic interaction of the scatterer and the incident
field, which is the solution of the Helmholtz equation

∇ × ∇ × E�x� � k20εr�x�E�x� � 0: (4)

The field diffracted or scattered by the object is defined as
E d≔E − E0. Combining Eqs. (3) and (4) allows us to refor-
mulate the scattering problem as a radiation problem. The scat-
tered field, now E d, satisfies the following propagation
equation:

∇ × ∇ × E d �x� � k20εr�x�E d �x� � k20�εr�x� − εbr �E0�x�; (5)

such that E d satisfies a radiation condition. The right hand side
can be viewed as a volume (current) source term with support
of the scatterer itself, and εr�x� − εbr is equal to εbs − εbr inside the
scatterer and 0 elsewhere.

The scattered field E d can be expanded on the basis of
outgoing vector partial waves �M���

n;m ;N���
n;m � built upon the

vector spherical harmonics �Xn;m;Yn;m;Zn;m� following the
framework and conventions described in detail in [20,21]

M���
n;m �kr� � h���

n �kr�Xn;m�θ;φ�; (6)

N���
n;m �kr� � 1

kr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�n� 1�

p
h���
n �kr�Yn;m�θ;φ�

� ξ 0�kr�Zn;m�θ;φ�
�
: (7)

The so-called multipole expansion is finally given by

E d �r� �
Xnmax

n�1

Xm
m�−n

f �h�
n;mM

���
n;m �kr� � f �e�

n;mN
���
n;m �kr�; (8)

where f �h�
n;m and f �e�

n;m can be numerically computed on any
sphere of radius R englobing the scatterer

f �e�
n;m � kR

ξ 0�kR�
Z

2π

0

Z
π

0

E d �R; θ;φ� · Z⋆
n;m�θ;φ�dθdφ; (9)

f �h�
n;m � kR

h���
n �kR�

Z
2π

0

Z
π

0

E d �R; θ;φ� · X⋆
n;m�θ;φ�dθdφ:

(10)

Note that E d in Eqs. (9) and (10) is expressed from the
FEM inherited Cartesian coordinates to spherical coordinates.
This expansion is the classical way to obtain the far field
radiation pattern of antennas. It would require major

Fig. 17. Reflection (left panel) and transmission (right panel) effi-
ciencies of structure F1 obtained with a rigorous FEM calculation
(solid line) and homogenization model (dashed line).

Fig. 18. Reflection (left panel) and transmission (right panel) effi-
ciencies of structure F2 obtained with the rigorous FEM calculation
(solid line) and homogenization model (dashed line).
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adjustments to take into account the substrate and superstrate.
First of all, let us state that the resonant phenomena described
in the previous section do not depend on the close vicinity of
the interface. Figure 19 shows the reflectivity of silver nanocy-
linder gratings of the optimized structure F1 when embedded
in a homogeneous infinite SiO2 background. In this simplified
model, the θ0 incidence is adjusted to compensate for the
missing refraction at the SiO2 interface θ0 � arcsin�sin�45°�∕
nSiO2

� ≈ 29°. The same four resonances as in Fig. 14 are
obviously excited with θ � 29° depending on the plane of
incidence (compare dashed and solid lines in Fig. 19). The only
noticeable difference in the s polarization case (see green and
cyan lines in Fig. 19) can be partly explained by the fact that
at 45° incidence, reflection on a bare silica diopter is ∼8.3% in s
polarization, while only ∼0.5% in p polarization, due to the
Brewster effect).

Consider now the single scatterer case. First of all, the only
non-negligible terms in the expansion given in Eq. (8) corre-
spond to electric dipoles no matter what the considered inci-
dence is. All higher electric orders and all magnetic orders are at
least 50-fold lower in magnitude than the dipolar electric ones
over the whole visible spectrum. As shown in Figs. 20(a) and
20(b) for ky � 0, i.e., when the incidence plane contains the rx-
axis of the ellipse, two resonant scenarios occur depending on
the incident polarization. With p polarization [Fig. 20(a)], the
incident electric field lies within the plane of incidence, and two
electric multipoles dominate the far field scattered power cor-
responding to induced electric dipoles of moments along Ox
(see f �e�

1;�1) andOz (see f
�e�
1;0). Heuristically, the incident electric

field only sees two characteristic dimensions of the scatterer, i.e.,
the height h of the elliptic nanocylinder and its greater diameter
2rx . With s polarization, the only induced dipole present is
along Oy, corresponding to the fact that the electric field
now only sees the smaller diameter 2ry. The larger radius
[Fig. 20(a)] leads to a redshifted resonant response of the par-
ticle, as already observed for gold circular cylinders (see
Fig. 10). The same considerations hold for kx � 0, as depicted
in Figs. 20(c) and 20(d). Electric field maps of the periodic and
isolated cases are very similar in spite of the rather small 200 nm
bi-period, which further confirms the weak coupling between
the elliptic nanocylinders. Above 450 nm, the subwavelength
bi-periodicity selects only the specular propagation direction
among all by constructive interferences.

6. CONCLUSION

We have shown the possibility of designing efficient reflective
filters with selective wavelength mirror properties together with
global transparency over the visible range. A numerical tool
based on the FEM has been used to analyze the behavior of
nanoparticle gratings, and a comparison between numerical
and experimental results has been performed. Two optimized
filters with two operating wavelengths depending on the polari-
zation have been proposed. It has been shown that Maxwell–
Garnett homogenization can be used to model the considered
structures. Also, the calculation of the radiation by a single
nanoparticle has shown that the diffractive properties of the
considered systems are governed by a single isolated particle.

Whereas the main principle has been demonstrated, the full
structure can be improved in several ways to increase reflectivity
and transmission. Especially, fabrication can be done now with-
out an ITO conductive layer and without a Ti attaching layer.
This should significantly reduce absorption. Besides, since the
diffractive properties are governed by a single isolated particle,
the same properties can be obtained with periodic or aperiodic
structures as long as the size and density of the nanoparticles are
the same. This may also considerably ease fabrication on large
surfaces.

These promising results pave the way for smart windows and
could find some innovative applications in the transport indus-
try such as in the automotive or aeronautic sectors for displays,
human–machine interfaces, and sensors.

APPENDIX A

1. Depolarization Dyadic for Circular Cylinders
The calculation of depolarization dyadic components associ-
ated with a finite circular cylinder is recalled. Let V be the
volume of a cylinder of height 2h and radius R, and let r
be the vector of coordinates �x; y; z� with the origin r � 0
at the center of the cylinder. Then, the dimensionless depolari-
zation dyadic at the center of the cylinder is formally given by

Fig. 19. (Dashed lines) Reflection efficiency in the specular order
for the structure F1 (same as left panel of Fig. 12). (Solid lines) Grating
of silver nanocylinders of the same dimensions as in optimized struc-
ture F1, but embedded in a homogeneous SiO2 background.
Reflection peaks in both panels are very similar.

Fig. 20. Reflection of the periodic structure compared to multipolar
coefficients of the isolated scatterer for incidence θ0 � 29°, with
(a) ky � 0 and p polarization, (b) kx � 0 and p polarization,
(c) ky � 0 and s polarization, and (d) kx � 0 and s polarization.
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L � −

Z
V
dr∇∇

1

4πjrj : (A1)

This expression has to be considered carefully since a singu-
larity is present at the origin. This difficulty is fixed by splitting
the integral above into a first integral over a small sphere B0 and
a second integral over the remaining volume V nB0. Next, using
an integral over B0 as just 1∕3 of the unit dyadic U , we have

L � 1

3
U −

Z
V nB0

dr∇∇
1

4πjrj : (A2)

Now, the Green–Ostrogradski theorem can be applied. Let
S and S0 be the surfaces of the cylinder V and the sphere B0,
respectively. The expression above becomes

L � 1

3
U −

Z
S
dsn∇

1

4πjrj �
Z
S0
dsn∇

1

4πjrj : (A3)

where d s is the infinitesimal surface element, and n is the out-
going normal of the surfaces. Since the last term is just U∕3,
the expression reduces to

L � −

Z
S
dsn∇

1

4πjrj �
Z
S
dsn

r
4πjrj3 : (A4)

Finally, using the symmetries of the cylinder, it is found that
the component Lz ≡ Lzz of the dyadic is given by the integra-
tion over the two horizontal disks at the top and bottom of the
cylinder

Lz � 2

Z
R

0

dr
Z

2π

0

rdϕ
h

4π�h2 � r2�3∕2 � 1 − cos θ: (A5)

As to the components Lx ≡ Lxx and Ly ≡ Lyy (Ly � Lx by
symmetry), they are provided by integration over the vertical
face of the cylinder

Lx �
Z

h

−h
dz

Z
2π

0

Rdϕ
R cos2 ϕ

4π�z2 � R2�3∕2 �
1

2
cos θ: (A6)

Hence the well-known expressions [22,23] have been
retrieved.

2. Depolarization Dyadic for Elliptic Cylinders
In this subsection, V and S are the volume and the surface,
respectively, of a cylinder with elliptic cross section of height
2h and radii Rx and Ry. All the procedures performed in the
circular case remain correct until Eq. (A.4). Similar to the pre-
vious case, using the symmetries of the elliptic cylinder, it is
found that the component Lz is given by integration over
the two horizontal surfaces Se defined by

Se � f�x; y�jx2∕R2
x � y2∕R2

y ≤ 1g: (A7)

Then, the depolarization component in the z direction is

Lz � 2

Z
Se
dxdy

h
4π�h2 � x2 � y2�3∕2 ; (A8)

which requires numerical integration to determine its value.
Again using the symmetries of the cylinder, it is deduced that
the depolarization factors Lx and Ly are provided by integration
over the vertical face of the cylinder. The vector r describing
this surface is (the third component z can be omitted)

r �
�
Rx cos ϕ
Ry sin ϕ

�
⇒

dr
dϕ

�
�
−Rx sin ϕ
Ry cos ϕ

�
; (A9)

and the unit normal n, orthogonal to dr∕dϕ, is then

n � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
x sin

2 ϕ� R2
y cos

2 ϕ
q

�
Ry cos ϕ
Rx sin ϕ

�
: (A10)

Then, the tensor product of the two vectors n and r is given
by

nr � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
x sin

2 ϕ� R2
y cos

2 ϕ
q

×
� RxRy cos

2 ϕ R2
x cos ϕ sin ϕ

R2
y cos ϕ sin ϕ RxRy sin

2 ϕ

�
: (A11)

Finally, since d s � dzdϕ × jdr∕dϕj, the obtained expres-
sions for the depolarization are:

Lx �
Z

h

−h
dz

Z
2π

0

dϕ
RxRy cos

2 ϕ

4π�z2 � R2
x cos

2 ϕ� R2
y sin

2 ϕ�3∕2 ;

Ly �
Z

h

−h
dz

Z
2π

0

dϕ
RxRy sin

2 ϕ

4π�z2 � R2
x cos

2 ϕ� R2
y sin

2 ϕ�3∕2 :

(A12)

Numerical integration is required to obtain the values of
these components.

3. Depolarization Dyadic for Circular Cylinders on a
Substrate
The case of a circular cylinder lying on a substrate is considered.
The notations are the same as in Appendix A.1, with origin
r � 0 at the center of the cylinder of height 2h. In addition,
a substrate of relative permittivity ϵ− is located in the half space
z < −h with its plane interface at the bottom circular face of the
cylinder. Let ϵ�r� be the relative permittivity defining the envi-
ronment of the cylinder: ϵ�r� � 1 if z > −h, and ϵ�r� � ϵ− if
z < −h. The electrostatic potential Φ�r� created by a point
source is the solution of

∇ · ϵ�r�∇Φ�r� � δ�r�: (A13)

Denoting r0 � 2hez , the solution of the equation above is

z > −h : Φ�r� � −
1

4πjrj −
1 − ϵ−

1� ϵ−
1

4πjr � r0j
;

z < −h : Φ�r� � −
2

1� ϵ−
1

4πjrj : (A14)

The depolarization dyadic is then given by an expression
equivalent to Eq. (14)

L � −

Z
S
dsn∇Φ�r�: (A15)

Next, the calculation is similar to the one in Appendix A.1,
with an additional term corresponding to the reflection part of
Φ�r�. The resulting expression for the vertical component of
the depolarization dyadic is

Lz � 1 − cos θ� 1 − ϵ−

1� ϵ−
cos θ − cos θ1

2
; (A16)
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where

cos θ � hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � R2

p ; cos θ1 �
3hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�3h�2 � R2
p : (A17)

The other components of the dyadic are

Lx � Ly �
cos θ

2
−
1 − ϵ−

1� ϵ−
cos θ − cos θ1

4
: (A18)

This calculation can be extended to cylinders with elliptic
cross section by following the procedure in Appendix A.2.
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