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ABSTRACT 

As far as we know, only a few studies have been, up to now, devoted to anisotropic gra
tings. We only have heard of the paper by our Japanese colleagues of Osaka Prefecture Uni
versity.1 We are also working in this field, in view of potential applications. Although 
some partial and unpublished results have been obtained some years ago in the framework of 
a contract with a private company (P.A. Technology, Cambridge), we think that we have to 
face a difficult problem which is far from being wholly resolved. We would like to report 
briefly on our theoretical work in order to inform "practical people" and, should the 
occasion arise, to initiate new collaborations. 

-I-
-I- T~roughout the paper we use a rectangular coordinate system Oxyz and we denote by ex' 
e y , e z the unit vec10rs o! axes Ox, Oy, Oz. We deal with time-harmonic fields represented 
by complex vectors E and H, using a time dependence in exp(-iwt). The permeability is 
equal to ~o everywhere and the relative permittivity is described by a 3 x 3 matrix [ E] : 
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We denote by Eo the vacuum permittivity, an1 we put ko = w~ = 2TI /A O • We say that the 
fields are TE (or TM) polarized when E (or H) is parallel to Oz. 

1. MULTILAYERED MEDIA 

This problem, with which we started our own 
investigations on anisotropic structures, has 
been studied by many authors 2 , 3 , " , 5 (fig.l). 
It can be solved by matrix techniques, each 
layer being represented by a 4 x 4 matrix. The 
computer code which has been written in our 
Laboratory can deal with lossy and anisotropic 
materials described by matrices [ E] whose all 
the elements are a priori different from zero. 
Of course this program has been extensively 
used in our preliminary studies on coated gra
tings. We also used it to try to well under-
stand (from the electromagnetic theory) the 
curious phenomenon of conical refraction as 
described in optics text-books. G When a li
nearly polarized plane wave illuminates under 
a well chosen incidence angle 8 0 the plane 
interface (y = 0) between vacuum and a biaxial 
~stal, the direction of the Poynting vector 
~ associated with the refracted wave d~~ends 

superstrate 

y= a 

mul t i- (--+---------
layered 
medium 

y=O--------O~z-----s-u-b-s-t-r-a-t-e----~x 

Figure 1. Multilayered media. The layers 
(0 < y < a) and the substrate are made 
of anisotropic materials. 

on the direction o!.the incident field El. In . 
£ther~ords, when El rotates 360° about the incident wave vector, the point P deflned as 
OP = ~ moves on a cone (may be some practical applications are possible). This cone cuts 
the, plane y = - Yo along a circle of radius R, as we have verified in good agreement with 
the computations we have performed for aragonite ([ E] is diagonal in the substrate, with 
E = 2.843, E 2.341 , E = 2.829; 8 0 = 14.52°; R/yo = 0.016). xx yy zz 

2. THE COATED GRATING STUDIED BY THE DIFFERENTIAL METHOD 

The structure we study is described in figure 2 ; space is divided into three regions 
two homogeneous regions (the superstrate (y > a) and the substrate ~y <.0)) a~d ~n i~homo
geneous region (0 < y < a) in which [ E] is a function of x and y whlch lS perlodlc wlth 
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superstrata [EJ = E, [IJ 

y=a----- --------

inhomogeneous and [E) = [E(x,YI) 
modulated region 

y=O x x 
substrate [E] = E, [1] 

Figure 2. The structure we study in 
the differential method. The region 

Figure 3. A particular case of fig.2 
a coated grating 

y < a may be filled with lossy materials 

respect to x (period d = 2n!K). As for the superstrate and the substrate, they are assumed 
to be isotropic* media, with permittivities ( l.[IJ and (s .[IJ ([IJ denotes the unit 3 x 3 
matrix). Numbers (1 and Es are respectively real and complex. This formulation allows us to 
deal with rather complicated structures. However, up to now, our computations have been 
limited to the structure of fig.3, i.e. a sinusoidal grating coated with one anisotropic 
layer. The grating is illuminated by a plane wave under the incidence 8 , and we look for 
the total field. We assume for the sake of simplicity that the incident wave vector lies 
in the xy plane and that consequently the fields are z independent. This hypothesis can be 
abandoned without any particular new theoretical difficulty, but of course the equations 
are then more cumbersome. Assuming existence and uniqueness of the solution, any field
component u(x,y) is known to be "pseudo-periodic", 7 which means that 

u(x + d, y) = exp(i IE; ko d sin 8 ) u(x,y) . 

Consequently, u(x,y) can be expanded in a generalized Fourier series according to 

+ 00 
u(x,y) = L 

n=-oo 
un (y) 1jJn (x) 

def 
exp [i (~ko sin 8 + nK) xJ exp(i a n x) . 

In the differential method that we have already used some years ago for isotropic 
gratings,7 it is assumed that one obtains a good approximation of u(x,y) when keeping only 
N components on the 1jJn basis. The field is represented by a vector J"'N (y) (column matrix) 
with 4N components which are the un(y) associated with Ex, Ez , Hx, Hz (Ey and Hy can be 
easily deduced from this 4 components). After boring manipulations, it turns out that the 
problem can be reduced to the numerical integration of a differential system on a bounded 
interval -d ~(y) 

= A(y) 
~ 

~(y) , for O <y<a , 
dy 

A being a known matrix depending on the structure. The system must be integrated taking 
into account some boundary conditions (at y = 0 and y = a) which can be deduced from the 
following physical remarks : for y > a, the field is the sum of the incident plane wave 
and of an outgoing plane waves Rayleigh expansion, and for y ~ _00 it must verify certain 
radiation conditions. In conclusion, we are led to a classical problem of mathematical 
phYSics, and many "numerical recipes" are available to perform the integration. 

As a first step and to solve a practical problem in the framework of our contract 
with P.A., we wrote a computer code allowing us to deal with isotropic substrates coated 
by an anisotropic layer described by a matrix [E~]. It must be emphasized that [Et] has 
the most general form: all its elements can be different from zero. Th~s pro
gram g1ves reliable results (for which the efficiencies stabilize quickly when N 
increases) for lossless dielectric materials (table 1). Unfortunately, it must 
be said that numerical difficulties have been encountered when dealing 

* The generalization to anisotropic substrates is not a difficult matter. 
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with metallic or dielectric gratings coated with gyrotropic layers, except for sufficiently 
shallow grooves. An example is given in table 2, which corresponds to the case of an unlos
sy dielectric grating coated with a gyrotropic cobalt layer. As the ratio (e + h)/d in
creases, the efficiencies stabilize slower and slower. Anyway, in this example, the expec
.ted effect (here the enhancement of the change in polarization when replacing a plane 
interface by a grating) is not observed. Because the differential method is very flexible 

· and easy to implement, we made an important effort to remove these numerical difficulties. 8 

Unfortunately the game is not worth the candle; whatever the tricks we have tried, it 
always appeared that any small improvement always entails a large increasing of the com
putation time. We decided therefore to investigate the possibilities of integral methods 
for the study of periodic anisotropic structures. 

R e f I e c t e d Tr a n s m i t t e d 
Order Angle 

TM + TM TM + TE Angle TM + TM TM + TE (degrees) 

N=15 - 2 -66.48 0.5719 E-2 0.1656 E-3 

- 1 -30.03 0.2305 E-l 0.5374 E-4 -19.49 0.8689 E-2 0.1063 E-3 

150 0 22.00 0.4364 E-l 0.4088 E-3 14.46 0.8490 0.1137 E-l 

steps 1 56.42 0 . 5614 E-1 0.1610 E-2 

N=9 

80 

steps 

h 

0.06 

0.02 

- 2 -66.48 0.5548 E-2 

- 1 -30.03 0 .2301 E-l 0.5155 E-4 -19.49 0.8508 E-2 

0 22.00 0.4361 E-l 0.4040 E-3 14.46 0.8502 

1 56.42 0.5557 E-1 

Table 1. Structure is the same as in fig. 3. Superstrate is vacuum. 
Anisotropic layer is a TiO z deposit, with 

[ 

4.4800 -0.1174 0.0923] 
[ E~ ] = -0.1174 4.7975 0.0985 

0.0923 0.0985 4.5125 

Substrate: dielectric, ES = 2.25; d = 0.8 ~m, e = 0.495 ~m, 
h = 0.1 ~m, AO = 0.7 ~m, e = 22°. The incident field is TM 
polarized. The table gives the efficiencies in the different orders. 
First results are obtained when truncating with N = 15, and using 
150 steps for the integration. These parameters are not critical 
as shown by the following results performed with N = 9 and 80 steps. 

Incident TE wave Incident TM wave 
N 

TE + TE TE + TM TM + TE 

11 0.466660 0.208 E-4 0.208 E-4 
15 0.466629 0.201 E-4 0.201 E-4 

~m 19 0.466634 0.198 E-4 0.198 E-4 
23 0.466634 0.195 E-4 0.195 E-4 

7 0.478795 0.2881 E-4 0.2881 E-4 
11 0.478793 0.2870 E-4 0.2870 E-4 

pm 15 0.478793 0.2866 E-4 0.2866 E-4 
19 0.478793 0 . 2863 E-4 0.2863 E-4 

same as in fig.3. Superstrate is vacuum. 

0.1626 

0.1055 

0.1137 

0.1591 

TM + TM 

0.2066 
0.1999 
0.1973 
0.1944 

0.4367 
0.4354 
0.4348 
0.4345 

Table 2. Structure is the 

Gyrotropic C[ObaoE~t layer 0 
EC = ( - 8.19 + i 16.38) 

EXZ (- 0.495 - i 0.106) • 
[E~] = EC 

-E 0 XZ 

Substrate: dielectric, ES = 2.25 ; d = 0.617 ~m, e = 0.02 ~, AO = 0.6328 ~m, 
e = 0 0 • The table gives the zero order reflected efficiencie~. 40.steps have 
been used for the integration. N is the number of terms reta~ned ~n the 
developments of the fields in generalized Fourier series. 

E-3 

E-3 

E-1 

E-2 
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3. THE COATED GRATING STUDIED BY THE INTEGRAL METHOD 

Por the sake of simplicity, let us explain 
the principle of this method in the case of 
an anisotropic grating without coating. The 
~nknow~s are now the tangential components of 
E and H on the grating profile T, which, as 
well known, are continuous. These~c~mpo~e~ts 
~a~ be~d~scribed by 4 functions (E.ez, E.t, 
H.ez, H.t) that we consider as the components 
of a column matrix P(x). The "key idea" con
sists in expressing the two following facts : 

a) (P - pi) is the boundary value* on ~ of 
an outgoing field propagating in n1 ; we ~ill 
refer to this property saying that (P - pl) + 
belongs to a certain vector space called 17 1 . 

b) P is the boundary value on ~ of an out
going field propagating in n2 (P E u 2-) • 

Anyone who has been working in mathematical 
physics as applied in the electromagnetic 

y 

Pigure 4. The domain 
medium 1) is filled 
material. The domain 
medium 2) is filled 
pic material. 

x 

Q 1 (y > f(x), 
with an isotropic 
Q2 (y < f (x) , 
with an anisotro-

theory of gratings will understand that to do that we need a set of nine Green's functions 
gij. Putting: 

3 

jt gij ~j i 

the gij are solution of : 

curl curl gi - k o
2 t[ E] gi 

1, 2, 3 , ( 1) 

(2) 

where t[E] is the transpose of [E], ~n the complex conjugate of ~n and 0 the Dirac distri
bution. Indeed, the determination of the Green's functions is not a trivial matter. Never
theless, we have been able to find the gij(X,y) in the special case where [ E] is a diagonal 
matrix. The interested reader can find more details (including considerations on the 
Green's functions for infinite space in the case of anisotropic media) in reference 9. We 
give here the results without proof : 

When [E] is diagonal, the solutions of (2), which verify an outgoing wave condition when 
y ~ too, have components which take the form 

* 

gll(X,y) 

g12(X,y) 

g22 (x,y) L: 
n 

L: 
n 

1 

i 

L: 
n 

sgn(y) exp ( - i a n x + i Bn Iyl) 

- 0 (y) 1 exp ( - i an x + i Bn \y\ ) 

L: exp ( - i an x + i B~ Iy\) , 
n 2d B~ 

o. 

pi corresponds to the incident field. 
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In these expressions, sgn(y) denotes the function equal to 1 when y > 0 and to -1 when 
y < O. Coefficients Bn and B ~ are defined by : 

B = / (k 0 2 £yy - a 2) £ 1£ n n xx yy 

and the square roots (possibly complex if the £ij are complex) are determined in the fol
lowing way 

z E C , 1m (/2) > 0 or rz > 0 

With the help of these Green's functions, and after a convenient limiting process (again a 
non trivial matter!), it turns out that the two propositions a) and b) of the "key idea" 
can be written in a more explicit manner: 

E lJi is equivalent to F - Fi 

is equivalent to F A2 F 

(3) 

(4) 

where Ai (resp. A;) are integral operators whose kernels depend only on the g . . of medium 1 
lJ 

(resp. medium 2) and their first and second derivatives. Equations (3) and (4) form a sys
tem of 8 integral equations for the 4 unknowns. This system S will be called hereafter the 
"fundamental system". Clearly, many other systems Si of integral equations can be deduced 
from the fundamental system. For example, among the 8 equations of S, there are 4 which do 
not contain the second derivatives of the Green's functions. Let us call Sl the system that 
they form. If we assume uniqueness of the solution for both Sand S1' and existence for S, 
then Sand S1 are equivalent (here they have the same solution). We can wonder which of the 
systems Si is the most convenient. Of course the answer to this question can not be given 
before the world "convenient" had been clearly defined. This problem gave us food for 
thought during the last months. At the present time we think that S1 is a good one (if not 
the best) because the kernels it contains are those to which we have been accustomed when 
dealing with isotropic gratings (unbounded kernels with a logarithmic singularity). 

In conclusion, we are now ready to begin the numerical study of the anisotropic grating 
when [£] is a diagonal matrix in the coordinate system we use. Taking into account the 
experience of our Laboratory in the field of integral equations, we tackle this new task 
with optimism. On the contrary, it is to be feared that the case of an arbitrary matrix [£] 
would give rise to a formidable problem. 
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